Timezone: »
Kernel mean embeddings are a powerful tool to represent probability distributions over arbitrary spaces as single points in a Hilbert space. Yet, the cost of computing and storing such embeddings prohibits their direct use in large-scale settings. We propose an efficient approximation procedure based on the Nyström method, which exploits a small random subset of the dataset. Our main result is an upper bound on the approximation error of this procedure. It yields sufficient conditions on the subsample size to obtain the standard (1/sqrt(n)) rate while reducing computational costs. We discuss applications of this result for the approximation of the maximum mean discrepancy and quadrature rules, and we illustrate our theoretical findings with numerical experiments.
Author Information
Antoine Chatalic (MaLGa and DIBRIS, Università di Genova (Italy))
Nicolas Schreuder (MALGA, DIBRIS, Università di Genova)
Lorenzo Rosasco (unige, mit, iit)
Alessandro Rudi (INRIA, École Normale Supérieure)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Nyström Kernel Mean Embeddings »
Thu. Jul 21st 03:45 -- 03:50 PM Room Room 327 - 329
More from the Same Authors
-
2022 Poster: Measuring dissimilarity with diffeomorphism invariance »
Théophile Cantelobre · Carlo Ciliberto · Benjamin Guedj · Alessandro Rudi -
2022 Spotlight: Measuring dissimilarity with diffeomorphism invariance »
Théophile Cantelobre · Carlo Ciliberto · Benjamin Guedj · Alessandro Rudi -
2022 Poster: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2022 Poster: Multiclass learning with margin: exponential rates with no bias-variance trade-off »
Stefano Vigogna · Giacomo Meanti · Ernesto De Vito · Lorenzo Rosasco -
2022 Spotlight: Multiclass learning with margin: exponential rates with no bias-variance trade-off »
Stefano Vigogna · Giacomo Meanti · Ernesto De Vito · Lorenzo Rosasco -
2022 Spotlight: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2021 Poster: Disambiguation of Weak Supervision leading to Exponential Convergence rates »
Vivien Cabannnes · Francis Bach · Alessandro Rudi -
2021 Spotlight: Disambiguation of Weak Supervision leading to Exponential Convergence rates »
Vivien Cabannnes · Francis Bach · Alessandro Rudi -
2020 Poster: Decentralised Learning with Random Features and Distributed Gradient Descent »
Dominic Richards · Patrick Rebeschini · Lorenzo Rosasco -
2020 Poster: Consistent Structured Prediction with Max-Min Margin Markov Networks »
Alex Nowak · Francis Bach · Alessandro Rudi -
2020 Poster: Near-linear time Gaussian process optimization with adaptive batching and resparsification »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco