Timezone: »
Designing protein sequences with a particular biological function is a long-lasting challenge for protein engineering. Recent advances in machine-learning-guided approaches focus on building a surrogate sequence-function model to reduce the burden of expensive in-lab experiments. In this paper, we study the exploration mechanism of model-guided sequence design. We leverage a natural property of protein fitness landscape that a concise set of mutations upon the wild-type sequence are usually sufficient to enhance the desired function. By utilizing this property, we propose Proximal Exploration (PEX) algorithm that prioritizes the evolutionary search for high-fitness mutants with low mutation counts. In addition, we develop a specialized model architecture, called Mutation Factorization Network (MuFacNet), to predict low-order mutational effects, which further improves the sample efficiency of model-guided evolution. In experiments, we extensively evaluate our method on a suite of in-silico protein sequence design tasks and demonstrate substantial improvement over baseline algorithms.
Author Information
Zhizhou Ren (University of Illinois at Urbana-Champaign)
Jiahan Li (Peking University)
Fan Ding (Purdue University)
Yuan Zhou (UIUC)
Jianzhu Ma (Institute for Artificial Intelligence, Peking University)
Jian Peng (UIUC)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Proximal Exploration for Model-guided Protein Sequence Design »
Wed. Jul 20th 03:35 -- 03:40 PM Room Hall G
More from the Same Authors
-
2021 : Coordinate-wise Control Variates for Deep Policy Gradients »
Yuanyi Zhong · Yuan Zhou · Jian Peng -
2022 : Is Self-Supervised Contrastive Learning More Robust Than Supervised Learning? »
Yuanyi Zhong · Haoran Tang · Junkun Chen · Jian Peng · Yu-Xiong Wang -
2022 Poster: Off-Policy Reinforcement Learning with Delayed Rewards »
Beining Han · Zhizhou Ren · Zuofan Wu · Yuan Zhou · Jian Peng -
2022 Spotlight: Off-Policy Reinforcement Learning with Delayed Rewards »
Beining Han · Zhizhou Ren · Zuofan Wu · Yuan Zhou · Jian Peng -
2022 Poster: Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets »
Xingang Peng · Shitong Luo · Jiaqi Guan · Qi Xie · Jian Peng · Jianzhu Ma -
2022 Poster: 3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design »
Yinan Huang · Xingang Peng · Jianzhu Ma · Muhan Zhang -
2022 Spotlight: Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets »
Xingang Peng · Shitong Luo · Jiaqi Guan · Qi Xie · Jian Peng · Jianzhu Ma -
2022 Oral: 3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design »
Yinan Huang · Xingang Peng · Jianzhu Ma · Muhan Zhang -
2022 Poster: Self-Organized Polynomial-Time Coordination Graphs »
Qianlan Yang · Weijun Dong · Zhizhou Ren · Jianhao Wang · Tonghan Wang · Chongjie Zhang -
2022 Spotlight: Self-Organized Polynomial-Time Coordination Graphs »
Qianlan Yang · Weijun Dong · Zhizhou Ren · Jianhao Wang · Tonghan Wang · Chongjie Zhang -
2021 Poster: XOR-CD: Linearly Convergent Constrained Structure Generation »
Fan Ding · Jianzhu Ma · Jinbo Xu · Yexiang Xue -
2021 Spotlight: XOR-CD: Linearly Convergent Constrained Structure Generation »
Fan Ding · Jianzhu Ma · Jinbo Xu · Yexiang Xue -
2021 Poster: Generalizable Episodic Memory for Deep Reinforcement Learning »
Hao Hu · Jianing Ye · Guangxiang Zhu · Zhizhou Ren · Chongjie Zhang -
2021 Spotlight: Generalizable Episodic Memory for Deep Reinforcement Learning »
Hao Hu · Jianing Ye · Guangxiang Zhu · Zhizhou Ren · Chongjie Zhang -
2021 Poster: Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample Complexity »
Zhang Zihan · Yuan Zhou · Xiangyang Ji -
2021 Spotlight: Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample Complexity »
Zhang Zihan · Yuan Zhou · Xiangyang Ji -
2020 Poster: Multinomial Logit Bandit with Low Switching Cost »
Kefan Dong · Yingkai Li · Qin Zhang · Yuan Zhou -
2020 Poster: A Chance-Constrained Generative Framework for Sequence Optimization »
Xianggen Liu · Qiang Liu · Sen Song · Jian Peng -
2019 Poster: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Poster: A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization »
Yucheng Chen · Matus Telgarsky · Chao Zhang · Bolton Bailey · Daniel Hsu · Jian Peng -
2019 Oral: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Oral: A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization »
Yucheng Chen · Matus Telgarsky · Chao Zhang · Bolton Bailey · Daniel Hsu · Jian Peng -
2018 Poster: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng -
2018 Oral: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng