Timezone: »
Poster
Fast Lossless Neural Compression with Integer-Only Discrete Flows
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang
By applying entropy codecs with learned data distributions, neural compressors have significantly outperformed traditional codecs in terms of compression ratio. However, the high inference latency of neural networks hinders the deployment of neural compressors in practical applications. In this work, we propose Integer-only Discrete Flows (IODF) an efficient neural compressor with integer-only arithmetic. Our work is built upon integer discrete flows, which consists of invertible transformations between discrete random variables. We propose efficient invertible transformations with integer-only arithmetic based on 8-bit quantization. Our invertible transformation is equipped with learnable binary gates to remove redundant filters during inference. We deploy IODF with TensorRT on GPUs, achieving $10\times$ inference speedup compared to the fastest existing neural compressors, while retaining the high compression rates on ImageNet32 and ImageNet64.
Author Information
Siyu Wang (Tsinghua University)
Jianfei Chen (Tsinghua University)
Chongxuan Li (Tsinghua University)
Jun Zhu (Tsinghua University)
Bo Zhang (Tsinghua University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Wed. Jul 20th 06:30 -- 06:35 PM Room Room 318 - 320
More from the Same Authors
-
2021 : Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk »
Chengyang Ying · Xinning Zhou · Dong Yan · Jun Zhu -
2021 : Strategically-timed State-Observation Attacks on Deep Reinforcement Learning Agents »
Xinning Zhou · You Qiaoben · Chengyang Ying · Jun Zhu -
2021 : Adversarial Semantic Contour for Object Detection »
Yichi Zhang · Zijian Zhu · Xiao Yang · Jun Zhu -
2021 : Query-based Adversarial Attacks on Graph with Fake Nodes »
Zhengyi Wang · Zhongkai Hao · Jun Zhu -
2023 : MissDiff: Training Diffusion Models on Tabular Data with Missing Values »
Yidong Ouyang · Liyan Xie · Chongxuan Li · Guang Cheng -
2023 Poster: MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks »
Jiachen Yao · Chang Su · Zhongkai Hao · LIU SONGMING · Hang Su · Jun Zhu -
2023 Poster: Towards Understanding Generalization of Macro-AUC in Multi-label Learning »
Guoqiang Wu · Chongxuan Li · Yilong Yin -
2023 Poster: Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning »
Cheng Lu · Huayu Chen · Jianfei Chen · Hang Su · Chongxuan Li · Jun Zhu -
2023 Poster: Stabilizing GANs' Training with Brownian Motion Controller »
Tianjiao Luo · Ziyu Zhu · Jianfei Chen · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2023 Poster: NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data »
LIU SONGMING · Zhongkai Hao · Chengyang Ying · Hang Su · Ze Cheng · Jun Zhu -
2023 Poster: Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs »
Kaiwen Zheng · Cheng Lu · Jianfei Chen · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu -
2023 Poster: GNOT: A General Neural Operator Transformer for Operator Learning »
Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu -
2022 Poster: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Spotlight: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Poster: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Spotlight: Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching »
Cheng Lu · Kaiwen Zheng · Fan Bao · Jianfei Chen · Chongxuan Li · Jun Zhu -
2022 Spotlight: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2022 Poster: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2022 Spotlight: Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models »
Fan Bao · Chongxuan Li · Jiacheng Sun · Jun Zhu · Bo Zhang -
2022 Spotlight: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Variance Reduction and Quasi-Newton for Particle-Based Variational Inference »
Michael Zhu · Chang Liu · Jun Zhu -
2020 Poster: VFlow: More Expressive Generative Flows with Variational Data Augmentation »
Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian -
2020 Poster: Nonparametric Score Estimators »
Yuhao Zhou · Jiaxin Shi · Jun Zhu -
2019 Poster: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2019 Oral: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2018 Poster: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Poster: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Oral: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Oral: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Poster: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2017 Poster: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu -
2017 Talk: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu