Timezone: »
Spotlight
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
Meyer Scetbon · Laurent Meunier · Yaniv Romano
We propose a new conditional dependence measure and a statistical test for conditional independence. The measure is based on the difference between analytic kernel embeddings of two well-suited distributions evaluated at a finite set of locations. We obtain its asymptotic distribution under the null hypothesis of conditional independence and design a consistent statistical test from it. We conduct a series of experiments showing that our new test outperforms state-of-the-art methods both in terms of type-I and type-II errors even in the high dimensional setting.
Author Information
Meyer Scetbon (CREST, ENSAE)
Laurent Meunier (Dauphine University - FAIR Paris)
Yaniv Romano (Technion---Israel Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings »
Thu. Jul 21st through Fri the 22nd Room Hall E #513
More from the Same Authors
-
2023 : Continuous Vector Quantile Regression »
Sanketh Vedula · Irene Tallini · Aviv A. Rosenberg · Marco Pegoraro · Emanuele Rodola · Yaniv Romano · Alexander Bronstein -
2023 Poster: Conformal Prediction with Missing Values »
Margaux Zaffran · Aymeric Dieuleveut · Julie Josse · Yaniv Romano -
2022 Poster: A Dynamical System Perspective for Lipschitz Neural Networks »
Laurent Meunier · Blaise Delattre · Alexandre ARAUJO · Alexandre Allauzen -
2022 Oral: A Dynamical System Perspective for Lipschitz Neural Networks »
Laurent Meunier · Blaise Delattre · Alexandre ARAUJO · Alexandre Allauzen -
2022 Poster: Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging »
Anastasios Angelopoulos · Amit Pal Kohli · Stephen Bates · Michael Jordan · Jitendra Malik · Thayer Alshaabi · Srigokul Upadhyayula · Yaniv Romano -
2022 Poster: Coordinated Double Machine Learning »
Nitai Fingerhut · Matteo Sesia · Yaniv Romano -
2022 Poster: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Spotlight: Coordinated Double Machine Learning »
Nitai Fingerhut · Matteo Sesia · Yaniv Romano -
2022 Spotlight: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Spotlight: Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging »
Anastasios Angelopoulos · Amit Pal Kohli · Stephen Bates · Michael Jordan · Jitendra Malik · Thayer Alshaabi · Srigokul Upadhyayula · Yaniv Romano -
2021 Poster: Mixed Nash Equilibria in the Adversarial Examples Game »
Laurent Meunier · Meyer Scetbon · Rafael Pinot · Jamal Atif · Yann Chevaleyre -
2021 Spotlight: Mixed Nash Equilibria in the Adversarial Examples Game »
Laurent Meunier · Meyer Scetbon · Rafael Pinot · Jamal Atif · Yann Chevaleyre -
2021 Poster: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2021 Spotlight: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2020 Poster: Harmonic Decompositions of Convolutional Networks »
Meyer Scetbon · Zaid Harchaoui