Timezone: »
We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional shift between the behavior policy and the optimal policy, (ii) function approximation to handle large state space, and (iii) minimax optimization for equilibrium solving. We propose a pessimism-based algorithm, dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distributional shift by constructing pessimistic estimates of the value functions for both players and outputs a policy pair by solving a correlated coarse equilibrium based on the two value functions. Furthermore, we establish a data-dependent upper bound on the suboptimality which recovers a sublinear rate without the assumption on uniform coverage of the dataset. We also prove an information-theoretical lower bound, which shows our upper bound is nearly minimax optimal, which suggests that the data-dependent term is intrinsic. Our theoretical results also highlight a notion of ``relative uncertainty'', which characterizes the necessary and sufficient condition for achieving sample efficiency in offline MGs. To the best of our knowledge, we provide the first nearly minimax optimal result for offline MGs with function approximation.
Author Information
Han Zhong (Peking University)
Wei Xiong (The Hong Kong University of Science and Technology)
Jiyuan Tan (Fudan University)
Liwei Wang (Peking University)
Tong Zhang (HKUST)

Tong Zhang is a professor of Computer Science and Mathematics at the Hong Kong University of Science and Technology. His research interests are machine learning, big data and their applications. He obtained a BA in Mathematics and Computer Science from Cornell University, and a PhD in Computer Science from Stanford University. Before joining HKUST, Tong Zhang was a professor at Rutgers University, and worked previously at IBM, Yahoo as research scientists, Baidu as the director of Big Data Lab, and Tencent as the founding director of AI Lab. Tong Zhang was an ASA fellow and IMS fellow, and has served as the chair or area-chair in major machine learning conferences such as NIPS, ICML, and COLT, and has served as associate editors in top machine learning journals such as PAMI, JMLR, and Machine Learning Journal.
Zhaoran Wang (Northwestern University)
Zhuoran Yang (Yale University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets »
Thu. Jul 21st through Fri the 22nd Room Hall E #900
More from the Same Authors
-
2021 : Optimistic Exploration with Backward Bootstrapped Bonus for Deep Reinforcement Learning »
Chenjia Bai · Lingxiao Wang · Lei Han · Jianye Hao · Animesh Garg · Peng Liu · Zhaoran Wang -
2021 : Is Pessimism Provably Efficient for Offline RL? »
Ying Jin · Zhuoran Yang · Zhaoran Wang -
2021 : Efficient Exploration by HyperDQN in Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Hao Liang · Tong Zhang -
2023 : Reinforcement learning with Human Feedback: Learning Dynamic Choices via Pessimism »
Zihao Li · Zhuoran Yang · Mengdi Wang -
2023 Poster: Beyond Uniform Lipschitz Condition in Differentially Private Optimization »
Rudrajit Das · Satyen Kale · Zheng Xu · Tong Zhang · Sujay Sanghavi -
2023 Poster: What is Essential for Unseen Goal Generalization of Offline Goal-conditioned RL? »
Rui Yang · Yong LIN · Xiaoteng Ma · Hao Hu · Chongjie Zhang · Tong Zhang -
2023 Poster: On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness »
Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du -
2023 Poster: Learning in POMDPs is Sample-Efficient with Hindsight Observability »
Jonathan Lee · Alekh Agarwal · Christoph Dann · Tong Zhang -
2023 Poster: Generalized Polyak Step Size for First Order Optimization with Momentum »
Xiaoyu Wang · Mikael Johansson · Tong Zhang -
2023 Poster: Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning »
Yulai Zhao · Zhuoran Yang · Zhaoran Wang · Jason Lee -
2023 Poster: Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement Learning in Unknown Stochastic Environments »
Yixuan Wang · Simon Zhan · Ruochen Jiao · Zhilu Wang · Wanxin Jin · Zhuoran Yang · Zhaoran Wang · Chao Huang · Qi Zhu -
2023 Poster: Provably Efficient Representation Learning with Tractable Planning in Low-Rank POMDP »
Jiacheng Guo · Zihao Li · Huazheng Wang · Mengdi Wang · Zhuoran Yang · Xuezhou Zhang -
2023 Poster: Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources »
Chengshuai Shi · Wei Xiong · Cong Shen · Jing Yang -
2023 Poster: Adaptive Barrier Smoothing for First-Order Policy Gradient with Contact Dynamics »
Shenao Zhang · Wanxin Jin · Zhaoran Wang -
2023 Poster: On the Convergence of Federated Averaging with Cyclic Client Participation »
Yae Jee Cho · PRANAY SHARMA · Gauri Joshi · Zheng Xu · Satyen Kale · Tong Zhang -
2023 Poster: A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests »
Bohang Zhang · Guhao Feng · Yiheng Du · Di He · Liwei Wang -
2023 Oral: On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness »
Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du -
2023 Poster: Learning to Incentivize Information Acquisition: Proper Scoring Rules Meet Principal-Agent Model »
Siyu Chen · Jibang Wu · Yifan Wu · Zhuoran Yang -
2023 Poster: Offline Meta Reinforcement Learning with In-Distribution Online Adaptation »
Jianhao Wang · Jin Zhang · Haozhe Jiang · Junyu Zhang · Liwei Wang · Chongjie Zhang -
2023 Poster: Achieving Hierarchy-Free Approximation for Bilevel Programs with Equilibrium Constraints »
Jiayang Li · Jing Yu · Boyi Liu · Yu Nie · Zhaoran Wang -
2023 Poster: Weakly Supervised Disentangled Generative Causal Representation Learning »
Xinwei Shen · Furui Liu · Hanze Dong · Qing Lian · Zhitang Chen · Tong Zhang -
2023 Poster: Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear Contextual Bandits and Markov Decision Processes »
Chenlu Ye · Wei Xiong · Quanquan Gu · Tong Zhang -
2022 Poster: A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games »
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Tong Zhang -
2022 Poster: Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation »
ZHIHAN LIU · Yufeng Zhang · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes »
Hongyi Guo · Qi Cai · Yufeng Zhang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes »
Hongyi Guo · Qi Cai · Yufeng Zhang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation »
ZHIHAN LIU · Yufeng Zhang · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games »
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Tong Zhang -
2022 Poster: Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency »
Qi Cai · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 Poster: Adaptive Model Design for Markov Decision Process »
Siyu Chen · Donglin Yang · Jiayang Li · Senmiao Wang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Adaptive Model Design for Markov Decision Process »
Siyu Chen · Donglin Yang · Jiayang Li · Senmiao Wang · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency »
Qi Cai · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 Poster: Nearly Optimal Policy Optimization with Stable at Any Time Guarantee »
Tianhao Wu · Yunchang Yang · Han Zhong · Liwei Wang · Simon Du · Jiantao Jiao -
2022 Poster: Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning »
Boxiang Lyu · Zhaoran Wang · Mladen Kolar · Zhuoran Yang -
2022 Poster: A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization »
Renzhe Xu · Xingxuan Zhang · Zheyan Shen · Tong Zhang · Peng Cui -
2022 Poster: Sparse Invariant Risk Minimization »
Xiao Zhou · Yong LIN · Weizhong Zhang · Tong Zhang -
2022 Poster: Model Agnostic Sample Reweighting for Out-of-Distribution Learning »
Xiao Zhou · Yong LIN · Renjie Pi · Weizhong Zhang · Renzhe Xu · Peng Cui · Tong Zhang -
2022 Poster: Probabilistic Bilevel Coreset Selection »
Xiao Zhou · Renjie Pi · Weizhong Zhang · Yong LIN · Zonghao Chen · Tong Zhang -
2022 Poster: Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning »
Shuang Qiu · Lingxiao Wang · Chenjia Bai · Zhuoran Yang · Zhaoran Wang -
2022 Poster: Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy »
ZHIHAN LIU · Lu Miao · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Poster: Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation »
Xiaoyu Chen · Han Zhong · Zhuoran Yang · Zhaoran Wang · Liwei Wang -
2022 Spotlight: Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy »
ZHIHAN LIU · Lu Miao · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Spotlight: Nearly Optimal Policy Optimization with Stable at Any Time Guarantee »
Tianhao Wu · Yunchang Yang · Han Zhong · Liwei Wang · Simon Du · Jiantao Jiao -
2022 Spotlight: A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization »
Renzhe Xu · Xingxuan Zhang · Zheyan Shen · Tong Zhang · Peng Cui -
2022 Spotlight: Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning »
Boxiang Lyu · Zhaoran Wang · Mladen Kolar · Zhuoran Yang -
2022 Spotlight: Probabilistic Bilevel Coreset Selection »
Xiao Zhou · Renjie Pi · Weizhong Zhang · Yong LIN · Zonghao Chen · Tong Zhang -
2022 Spotlight: Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation »
Xiaoyu Chen · Han Zhong · Zhuoran Yang · Zhaoran Wang · Liwei Wang -
2022 Spotlight: Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning »
Shuang Qiu · Lingxiao Wang · Chenjia Bai · Zhuoran Yang · Zhaoran Wang -
2022 Spotlight: Model Agnostic Sample Reweighting for Out-of-Distribution Learning »
Xiao Zhou · Yong LIN · Renjie Pi · Weizhong Zhang · Renzhe Xu · Peng Cui · Tong Zhang -
2022 Spotlight: Sparse Invariant Risk Minimization »
Xiao Zhou · Yong LIN · Weizhong Zhang · Tong Zhang -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 : Invited Talk #1 »
Liwei Wang -
2021 Poster: Decentralized Single-Timescale Actor-Critic on Zero-Sum Two-Player Stochastic Games »
Hongyi Guo · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2021 Poster: Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons »
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang -
2021 Spotlight: Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons »
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang -
2021 Spotlight: Decentralized Single-Timescale Actor-Critic on Zero-Sum Two-Player Stochastic Games »
Hongyi Guo · Zuyue Fu · Zhuoran Yang · Zhaoran Wang -
2021 Poster: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Poster: Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality »
Tengyu Xu · Zhuoran Yang · Zhaoran Wang · Yingbin LIANG -
2021 Poster: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Poster: Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport »
Lewis Liu · Yufeng Zhang · Zhuoran Yang · Reza Babanezhad · Zhaoran Wang -
2021 Spotlight: Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport »
Lewis Liu · Yufeng Zhang · Zhuoran Yang · Reza Babanezhad · Zhaoran Wang -
2021 Spotlight: Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality »
Tengyu Xu · Zhuoran Yang · Zhaoran Wang · Yingbin LIANG -
2021 Spotlight: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Poster: On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP »
Tianhao Wu · Yunchang Yang · Simon Du · Liwei Wang -
2021 Poster: Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions »
Shuang Qiu · Xiaohan Wei · Jieping Ye · Zhaoran Wang · Zhuoran Yang -
2021 Poster: On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game »
Shuang Qiu · Jieping Ye · Zhaoran Wang · Zhuoran Yang -
2021 Poster: Principled Exploration via Optimistic Bootstrapping and Backward Induction »
Chenjia Bai · Lingxiao Wang · Lei Han · Jianye Hao · Animesh Garg · Peng Liu · Zhaoran Wang -
2021 Oral: On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game »
Shuang Qiu · Jieping Ye · Zhaoran Wang · Zhuoran Yang -
2021 Spotlight: On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP »
Tianhao Wu · Yunchang Yang · Simon Du · Liwei Wang -
2021 Spotlight: Principled Exploration via Optimistic Bootstrapping and Backward Induction »
Chenjia Bai · Lingxiao Wang · Lei Han · Jianye Hao · Animesh Garg · Peng Liu · Zhaoran Wang -
2021 Oral: Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions »
Shuang Qiu · Xiaohan Wei · Jieping Ye · Zhaoran Wang · Zhuoran Yang -
2021 Poster: Learning While Playing in Mean-Field Games: Convergence and Optimality »
Qiaomin Xie · Zhuoran Yang · Zhaoran Wang · Andreea Minca -
2021 Poster: Is Pessimism Provably Efficient for Offline RL? »
Ying Jin · Zhuoran Yang · Zhaoran Wang -
2021 Poster: GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training »
Tianle Cai · Shengjie Luo · Keyulu Xu · Di He · Tie-Yan Liu · Liwei Wang -
2021 Spotlight: Is Pessimism Provably Efficient for Offline RL? »
Ying Jin · Zhuoran Yang · Zhaoran Wang -
2021 Spotlight: GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training »
Tianle Cai · Shengjie Luo · Keyulu Xu · Di He · Tie-Yan Liu · Liwei Wang -
2021 Spotlight: Learning While Playing in Mean-Field Games: Convergence and Optimality »
Qiaomin Xie · Zhuoran Yang · Zhaoran Wang · Andreea Minca -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Poster: Risk-Sensitive Reinforcement Learning with Function Approximation: A Debiasing Approach »
Yingjie Fei · Zhuoran Yang · Zhaoran Wang -
2021 Oral: Risk-Sensitive Reinforcement Learning with Function Approximation: A Debiasing Approach »
Yingjie Fei · Zhuoran Yang · Zhaoran Wang -
2020 Poster: On Layer Normalization in the Transformer Architecture »
Ruibin Xiong · Yunchang Yang · Di He · Kai Zheng · Shuxin Zheng · Chen Xing · Huishuai Zhang · Yanyan Lan · Liwei Wang · Tie-Yan Liu -
2020 Poster: Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning »
Lingxiao Wang · Zhuoran Yang · Zhaoran Wang -
2020 Poster: (Locally) Differentially Private Combinatorial Semi-Bandits »
Xiaoyu Chen · Kai Zheng · Zixin Zhou · Yunchang Yang · Wei Chen · Liwei Wang -
2020 Poster: Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization »
Rie Johnson · Tong Zhang -
2020 Poster: Provably Efficient Exploration in Policy Optimization »
Qi Cai · Zhuoran Yang · Chi Jin · Zhaoran Wang -
2020 Poster: On the Global Optimality of Model-Agnostic Meta-Learning »
Lingxiao Wang · Qi Cai · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees »
Sen Na · Yuwei Luo · Zhuoran Yang · Zhaoran Wang · Mladen Kolar -
2019 Poster: Efficient Training of BERT by Progressively Stacking »
Linyuan Gong · Di He · Zhuohan Li · Tao Qin · Liwei Wang · Tie-Yan Liu -
2019 Poster: $\texttt{DoubleSqueeze}$: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression »
Hanlin Tang · Chen Yu · Xiangru Lian · Tong Zhang · Ji Liu -
2019 Oral: Efficient Training of BERT by Progressively Stacking »
Linyuan Gong · Di He · Zhuohan Li · Tao Qin · Liwei Wang · Tie-Yan Liu -
2019 Oral: $\texttt{DoubleSqueeze}$: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression »
Hanlin Tang · Chen Yu · Xiangru Lian · Tong Zhang · Ji Liu -
2019 Poster: On the statistical rate of nonlinear recovery in generative models with heavy-tailed data »
Xiaohan Wei · Zhuoran Yang · Zhaoran Wang -
2019 Oral: On the statistical rate of nonlinear recovery in generative models with heavy-tailed data »
Xiaohan Wei · Zhuoran Yang · Zhaoran Wang -
2019 Poster: Gradient Descent Finds Global Minima of Deep Neural Networks »
Simon Du · Jason Lee · Haochuan Li · Liwei Wang · Xiyu Zhai -
2019 Poster: Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI »
Lei Han · Peng Sun · Yali Du · Jiechao Xiong · Qing Wang · Xinghai Sun · Han Liu · Tong Zhang -
2019 Oral: Gradient Descent Finds Global Minima of Deep Neural Networks »
Simon Du · Jason Lee · Haochuan Li · Liwei Wang · Xiyu Zhai -
2019 Oral: Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI »
Lei Han · Peng Sun · Yali Du · Jiechao Xiong · Qing Wang · Xinghai Sun · Han Liu · Tong Zhang -
2019 Tutorial: Causal Inference and Stable Learning »
Tong Zhang · Peng Cui -
2018 Poster: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Poster: The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference »
Hao Lu · Yuan Cao · Junwei Lu · Han Liu · Zhaoran Wang -
2018 Poster: Candidates vs. Noises Estimation for Large Multi-Class Classification Problem »
Lei Han · Yiheng Huang · Tong Zhang -
2018 Poster: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Oral: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: Candidates vs. Noises Estimation for Large Multi-Class Classification Problem »
Lei Han · Yiheng Huang · Tong Zhang -
2018 Oral: The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference »
Hao Lu · Yuan Cao · Junwei Lu · Han Liu · Zhaoran Wang -
2018 Poster: Towards Binary-Valued Gates for Robust LSTM Training »
Zhuohan Li · Di He · Fei Tian · Wei Chen · Tao Qin · Liwei Wang · Tie-Yan Liu -
2018 Poster: Graphical Nonconvex Optimization via an Adaptive Convex Relaxation »
Qiang Sun · Kean Ming Tan · Han Liu · Tong Zhang -
2018 Poster: Composite Functional Gradient Learning of Generative Adversarial Models »
Rie Johnson · Tong Zhang -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Oral: Graphical Nonconvex Optimization via an Adaptive Convex Relaxation »
Qiang Sun · Kean Ming Tan · Han Liu · Tong Zhang -
2018 Oral: Towards Binary-Valued Gates for Robust LSTM Training »
Zhuohan Li · Di He · Fei Tian · Wei Chen · Tao Qin · Liwei Wang · Tie-Yan Liu -
2018 Oral: Composite Functional Gradient Learning of Generative Adversarial Models »
Rie Johnson · Tong Zhang -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: Safe Element Screening for Submodular Function Minimization »
Weizhong Zhang · Bin Hong · Lin Ma · Wei Liu · Tong Zhang -
2018 Poster: End-to-end Active Object Tracking via Reinforcement Learning »
Wenhan Luo · Peng Sun · Fangwei Zhong · Wei Liu · Tong Zhang · Yizhou Wang -
2018 Poster: Dropout Training, Data-dependent Regularization, and Generalization Bounds »
Wenlong Mou · Yuchen Zhou · Jun Gao · Liwei Wang -
2018 Oral: Dropout Training, Data-dependent Regularization, and Generalization Bounds »
Wenlong Mou · Yuchen Zhou · Jun Gao · Liwei Wang -
2018 Oral: End-to-end Active Object Tracking via Reinforcement Learning »
Wenhan Luo · Peng Sun · Fangwei Zhong · Wei Liu · Tong Zhang · Yizhou Wang -
2018 Oral: Safe Element Screening for Submodular Function Minimization »
Weizhong Zhang · Bin Hong · Lin Ma · Wei Liu · Tong Zhang -
2017 Poster: Projection-free Distributed Online Learning in Networks »
Wenpeng Zhang · Peilin Zhao · Wenwu Zhu · Steven Hoi · Tong Zhang -
2017 Poster: Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible »
Kai Zheng · Wenlong Mou · Liwei Wang -
2017 Talk: Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible »
Kai Zheng · Wenlong Mou · Liwei Wang -
2017 Talk: Projection-free Distributed Online Learning in Networks »
Wenpeng Zhang · Peilin Zhao · Wenwu Zhu · Steven Hoi · Tong Zhang -
2017 Poster: Efficient Distributed Learning with Sparsity »
Jialei Wang · Mladen Kolar · Nati Srebro · Tong Zhang -
2017 Talk: Efficient Distributed Learning with Sparsity »
Jialei Wang · Mladen Kolar · Nati Srebro · Tong Zhang