Timezone: »

Individual Preference Stability for Clustering
Saba Ahmadi · Pranjal Awasthi · Samir Khuller · Matthäus Kleindessner · Jamie Morgenstern · Pattara Sukprasert · Ali Vakilian

Tue Jul 19 11:15 AM -- 11:35 AM (PDT) @ Room 310

In this paper, we propose a natural notion of individual preference (IP) stability for clustering, which asks that every data point, on average, is closer to the points in its own cluster than to the points in any other cluster. Our notion can be motivated from several perspectives, including game theory and algorithmic fairness. We study several questions related to our proposed notion. We first show that deciding whether a given data set allows for an IP-stable clustering in general is NP-hard. As a result, we explore the design of efficient algorithms for finding IP-stable clusterings in some restricted metric spaces. We present a polytime algorithm to find a clustering satisfying exact IP-stability on the real line, and an efficient algorithm to find an IP-stable 2-clustering for a tree metric. We also consider relaxing the stability constraint, i.e., every data point should not be too far from its own cluster compared to any other cluster. For this case, we provide polytime algorithms with different guarantees. We evaluate some of our algorithms and several standard clustering approaches on real data sets.

Author Information

Saba Ahmadi (Toyota Technological Institute at Chicago)
Pranjal Awasthi (Google)
Samir Khuller (Northwestern University)
Matthäus Kleindessner (Amazon)
Jamie Morgenstern (U Washington)
Pattara Sukprasert (Northwestern University)
Ali Vakilian (Toyota Technological Institute at Chicago)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors