Timezone: »
Data augmentation is a cornerstone of the machine learning pipeline, yet its theoretical underpinnings remain unclear. Is it merely a way to artificially augment the data set size? Or is it about encouraging the model to satisfy certain invariances? In this work we consider another angle, and we study the effect of data augmentation on the dynamic of the learning process. We find that data augmentation can alter the relative importance of various features, effectively making certain informative but hard to learn features more likely to be captured in the learning process. Importantly, we show that this effect is more pronounced for non-linear models, such as neural networks. Our main contribution is a detailed analysis of data augmentation on the learning dynamic for a two layer convolutional neural network in the recently proposed multi-view model by Z. Allen-Zhu and Y. Li. We complement this analysis with further experimental evidence that data augmentation can be viewed as a form of feature manipulation.
Author Information
Ruoqi Shen (University of Washington)
Sebastien Bubeck (Microsoft Research)
Suriya Gunasekar (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Data Augmentation as Feature Manipulation »
Wed. Jul 20th through Thu the 21st Room Hall E #302
More from the Same Authors
-
2021 : Inductive Bias of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm »
Meena Jagadeesan · Ilya Razenshteyn · Suriya Gunasekar -
2021 : Ranking Architectures by Feature Extraction Capabilities »
Debadeepta Dey · Shital Shah · Sebastien Bubeck -
2021 : A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2021 : Function space view of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm »
Suriya Gunasekar -
2021 : A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2020 Poster: Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization »
Hadrien Hendrikx · Lin Xiao · Sebastien Bubeck · Francis Bach · Laurent Massoulié -
2020 Poster: Online Learning for Active Cache Synchronization »
Andrey Kolobov · Sebastien Bubeck · Julian Zimmert -
2019 Poster: Adversarial examples from computational constraints »
Sebastien Bubeck · Yin Tat Lee · Eric Price · Ilya Razenshteyn -
2019 Poster: Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models »
Mor Shpigel Nacson · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2019 Oral: Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models »
Mor Shpigel Nacson · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2019 Oral: Adversarial examples from computational constraints »
Sebastien Bubeck · Yin Tat Lee · Eric Price · Ilya Razenshteyn -
2018 Poster: Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits »
Zeyuan Allen-Zhu · Sebastien Bubeck · Yuanzhi Li -
2018 Poster: Characterizing Implicit Bias in Terms of Optimization Geometry »
Suriya Gunasekar · Jason Lee · Daniel Soudry · Nati Srebro -
2018 Oral: Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits »
Zeyuan Allen-Zhu · Sebastien Bubeck · Yuanzhi Li -
2018 Oral: Characterizing Implicit Bias in Terms of Optimization Geometry »
Suriya Gunasekar · Jason Lee · Daniel Soudry · Nati Srebro -
2017 Poster: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié -
2017 Talk: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié