Timezone: »

 
Poster
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim · Lukang Sun · Peter Richtarik

Thu Jul 21 03:00 PM -- 05:00 PM (PDT) @ Hall E #725

Stein Variational Gradient Descent (SVGD) is an algorithm for sampling from a target density which is known up to a multiplicative constant. Although SVGD is a popular algorithm in practice, its theoretical study is limited to a few recent works. We study the convergence of SVGD in the population limit, (i.e., with an infinite number of particles) to sample from a non-logconcave target distribution satisfying Talagrand's inequality T1. We first establish the convergence of the algorithm. Then, we establish a dimension-dependent complexity bound in terms of the Kernelized Stein Discrepancy (KSD). Unlike existing works, we do not assume that the KSD is bounded along the trajectory of the algorithm. Our approach relies on interpreting SVGD as a gradient descent over a space of probability measures.

Author Information

Adil Salim (Microsoft)
Lukang Sun (KAUST)
Lukang Sun

I originally come from China and now is pursuing a PhD degree in computer science under the supervision of Peter Richtarik at King Abdullah University of Science and Technology since 2021.

Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.‚Äč

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors