Timezone: »
We propose Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT), a method that combines a sequential Monte Carlo (SMC) sampler (itself a generalization of Annealed Importance Sampling) with variational inference using normalizing flows. The normalizing flows are directly trained to transport between annealing temperatures using a KL divergence for each transition. This optimization objective is itself estimated using the normalizing flow/SMC approximation. We show conceptually and using multiple empirical examples that CRAFT improves on Annealed Flow Transport Monte Carlo (Arbel et al., 2021), on which it builds and also on Markov chain Monte Carlo (MCMC) based Stochastic Normalizing Flows (Wu et al., 2020). By incorporating CRAFT within particle MCMC, we show that such learnt samplers can achieve impressively accurate results on a challenging lattice field theory example.
Author Information
Alexander Matthews (DeepMind)
Michael Arbel (Inria Grenoble Rhône Alpes)
Danilo J. Rezende (DeepMind)

Danilo is a Senior Staff Research Scientist at Google DeepMind, where he works on probabilistic machine reasoning and learning algorithms. He has a BA in Physics and MSc in Theoretical Physics from Ecole Polytechnique (Palaiseau – France) and from the Institute of Theoretical Physics (SP – Brazil) and a Ph.D. in Computational Neuroscience at Ecole Polytechnique Federale de Lausanne, EPFL (Lausanne – Switzerland). His research focuses on scalable inference methods, generative models of complex data (such as images and video), applied probability, causal reasoning and unsupervised learning for decision-making.
Arnaud Doucet (Google DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Continual Repeated Annealed Flow Transport Monte Carlo »
Tue. Jul 19th through Wed the 20th Room Hall E #709
More from the Same Authors
-
2022 : Riemannian Diffusion Schr\"odinger Bridge »
James Thornton · Valentin De Bortoli · Michael Hutchinson · Emile Mathieu · Yee Whye Teh · Arnaud Doucet -
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2023 : Categorical SDEs with Simplex Diffusion »
Pierre Richemond · Sander Dieleman · Arnaud Doucet -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Spotlight: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Poster: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Spotlight: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2021 Workshop: INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Ricky T. Q. Chen · Danilo J. Rezende -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Poster: Annealed Flow Transport Monte Carlo »
Michael Arbel · Alexander Matthews · Arnaud Doucet -
2021 Oral: Annealed Flow Transport Monte Carlo »
Michael Arbel · Alexander Matthews · Arnaud Doucet -
2021 Oral: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Poster: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2021 Oral: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2021 Oral: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2021 Poster: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2020 Workshop: INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Chris Cremer · Ricky T. Q. Chen · Danilo J. Rezende -
2020 Poster: Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows »
Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet -
2020 Poster: Normalizing Flows on Tori and Spheres »
Danilo J. Rezende · George Papamakarios · Sebastien Racaniere · Michael Albergo · Gurtej Kanwar · Phiala Shanahan · Kyle Cranmer -
2020 Tutorial: Representation Learning Without Labels »
S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende -
2019 Workshop: Invertible Neural Networks and Normalizing Flows »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Aidan Gomez · Chris Cremer · Aaron Courville · Ricky T. Q. Chen · Danilo J. Rezende -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: Replica Conditional Sequential Monte Carlo »
Alex Shestopaloff · Arnaud Doucet -
2019 Poster: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Oral: Replica Conditional Sequential Monte Carlo »
Alex Shestopaloff · Arnaud Doucet -
2019 Oral: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Poster: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau -
2019 Oral: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Oral: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami