Timezone: »
Mini-batch optimal transport (m-OT) has been widely used recently to deal with the memory issue of OT in large-scale applications. Despite their practicality, m-OT suffers from misspecified mappings, namely, mappings that are optimal on the mini-batch level but are partially wrong in the comparison with the optimal transportation plan between the original measures. Motivated by the misspecified mappings issue, we propose a novel mini-batch method by using partial optimal transport (POT) between mini-batch empirical measures, which we refer to as mini-batch partial optimal transport (m-POT). Leveraging the insight from the partial transportation, we explain the source of misspecified mappings from the m-OT and motivate why limiting the amount of transported masses among mini-batches via POT can alleviate the incorrect mappings. Finally, we carry out extensive experiments on various applications such as deep domain adaptation, partial domain adaptation, deep generative model, color transfer, and gradient flow to demonstrate the favorable performance of m-POT compared to current mini-batch methods.
Author Information
Khai Nguyen (University of Texas at Austin)
Dang Nguyen (VinAI)

AI Resident
The-Anh Vu-Le (VinAI)
Tung Pham (VinAI Research)
Nhat Ho (University of Texas at Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Improving Mini-batch Optimal Transport via Partial Transportation »
Wed. Jul 20th 03:35 -- 03:40 PM Room Ballroom 3 & 4
More from the Same Authors
-
2023 : Fast Approximation of the Generalized Sliced-Wasserstein Distance »
Dung Le · Huy Nguyen · Khai Nguyen · Nhat Ho -
2023 Poster: Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature »
Khang Nguyen · Nong Hieu · Vinh NGUYEN · Nhat Ho · Stanley Osher · TAN NGUYEN -
2023 Poster: On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances »
Aritra Guha · Nhat Ho · XuanLong Nguyen -
2023 Poster: Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction »
Khai Nguyen · Dang Nguyen · Nhat Ho -
2023 Poster: Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data »
Hien Dang · Tho Tran Huu · Stanley Osher · Hung Tran-The · Nhat Ho · TAN NGUYEN -
2022 Poster: Entropic Gromov-Wasserstein between Gaussian Distributions »
Khang Le · Dung Le · Huy Nguyen · · Tung Pham · Nhat Ho -
2022 Poster: Improving Transformers with Probabilistic Attention Keys »
Tam Nguyen · Tan Nguyen · Dung Le · Duy Khuong Nguyen · Viet-Anh Tran · Richard Baraniuk · Nhat Ho · Stanley Osher -
2022 Spotlight: Improving Transformers with Probabilistic Attention Keys »
Tam Nguyen · Tan Nguyen · Dung Le · Duy Khuong Nguyen · Viet-Anh Tran · Richard Baraniuk · Nhat Ho · Stanley Osher -
2022 Spotlight: Entropic Gromov-Wasserstein between Gaussian Distributions »
Khang Le · Dung Le · Huy Nguyen · · Tung Pham · Nhat Ho -
2022 Poster: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2022 Poster: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Spotlight: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Spotlight: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2022 Poster: Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models »
Tudor Manole · Nhat Ho -
2022 Oral: Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models »
Tudor Manole · Nhat Ho -
2021 Poster: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung -
2021 Spotlight: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung -
2020 Poster: On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm »
Khiem Pham · Khang Le · Nhat Ho · Tung Pham · Hung Bui