Timezone: »
Explaining graph neural networks (GNNs) has become more and more important recently. Higher-order interpretation schemes, such as GNN-LRP (layer-wise relevance propagation for GNN), emerged as powerful tools for unraveling how different features interact thereby contributing to explaining GNNs.GNN-LRP gives a relevance attribution of walks between nodes at each layer, and the subgraph attribution is expressed as a sum over exponentially many such walks. In this work, we demonstrate that such exponential complexity can be avoided. In particular, we propose novel algorithmsthat enable to attribute subgraphs with GNN-LRP in linear-time (w.r.t. the network depth). Our algorithms are derived via message passing techniques that make use of the distributive property, therebydirectly computing quantitiesfor higher-order explanations.We further adapt our efficient algorithms to computea generalization of subgraph attributions that also takes into account the neighboring graph features.Experimental results show the significant acceleration of the proposed algorithms and demonstrate the high usefulness and scalability of our novel generalized subgraph attribution method.
Author Information
Ping Xiong (Technical University Berlin)
Thomas Schnake (TU Berlin)
Grégoire Montavon (Technische Universität Berlin)
Klaus-robert Mueller (Technische Universität Berlin)
Shinichi Nakajima (TU Berlin)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Efficient Computation of Higher-Order Subgraph Attribution via Message Passing »
Tue. Jul 19th through Wed the 20th Room Hall E #1008
More from the Same Authors
-
2023 Poster: Relevant Walk Search for Explaining Graph Neural Networks »
Ping Xiong · Thomas Schnake · Michael Gastegger · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima -
2022 Poster: Path-Gradient Estimators for Continuous Normalizing Flows »
Lorenz Vaitl · Kim A. Nicoli · Shinichi Nakajima · Pan Kessel -
2022 Poster: XAI for Transformers: Better Explanations through Conservative Propagation »
Ameen Ali · Thomas Schnake · Oliver Eberle · Grégoire Montavon · Klaus-robert Mueller · Lior Wolf -
2022 Spotlight: XAI for Transformers: Better Explanations through Conservative Propagation »
Ameen Ali · Thomas Schnake · Oliver Eberle · Grégoire Montavon · Klaus-robert Mueller · Lior Wolf -
2022 Oral: Path-Gradient Estimators for Continuous Normalizing Flows »
Lorenz Vaitl · Kim A. Nicoli · Shinichi Nakajima · Pan Kessel -
2021 : [12:52 - 01:45 PM UTC] Invited Talk 2: Toward Explainable AI »
Klaus-robert Mueller · Wojciech Samek · Grégoire Montavon -
2020 Workshop: XXAI: Extending Explainable AI Beyond Deep Models and Classifiers »
Wojciech Samek · Andreas HOLZINGER · Ruth Fong · Taesup Moon · Klaus-robert Mueller -
2020 Poster: Fairwashing explanations with off-manifold detergent »
Christopher Anders · Plamen Pasliev · Ann-Kathrin Dombrowski · Klaus-robert Mueller · Pan Kessel -
2017 Poster: Minimizing Trust Leaks for Robust Sybil Detection »
János Höner · Shinichi Nakajima · Alexander Bauer · Klaus-robert Mueller · Nico Görnitz -
2017 Talk: Minimizing Trust Leaks for Robust Sybil Detection »
János Höner · Shinichi Nakajima · Alexander Bauer · Klaus-robert Mueller · Nico Görnitz