Timezone: »

Efficient Computation of Higher-Order Subgraph Attribution via Message Passing
Ping Xiong · Thomas Schnake · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima

Tue Jul 19 03:30 PM -- 05:30 PM (PDT) @ Hall E #1008

Explaining graph neural networks (GNNs) has become more and more important recently. Higher-order interpretation schemes, such as GNN-LRP (layer-wise relevance propagation for GNN), emerged as powerful tools for unraveling how different features interact thereby contributing to explaining GNNs.GNN-LRP gives a relevance attribution of walks between nodes at each layer, and the subgraph attribution is expressed as a sum over exponentially many such walks. In this work, we demonstrate that such exponential complexity can be avoided. In particular, we propose novel algorithmsthat enable to attribute subgraphs with GNN-LRP in linear-time (w.r.t. the network depth). Our algorithms are derived via message passing techniques that make use of the distributive property, therebydirectly computing quantitiesfor higher-order explanations.We further adapt our efficient algorithms to computea generalization of subgraph attributions that also takes into account the neighboring graph features.Experimental results show the significant acceleration of the proposed algorithms and demonstrate the high usefulness and scalability of our novel generalized subgraph attribution method.

Author Information

Ping Xiong (Technical University Berlin)
Thomas Schnake (TU Berlin)
Grégoire Montavon (Technische Universität Berlin)
Klaus-robert Mueller (Technische Universität Berlin)
Shinichi Nakajima (TU Berlin)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors