Timezone: »

Mirror Learning: A Unifying Framework of Policy Optimisation
Jakub Grudzien Kuba · Christian Schroeder de Witt · Jakob Foerster

Tue Jul 19 07:55 AM -- 08:00 AM (PDT) @ Hall F

Modern deep reinforcement learning (RL) algorithms are motivated by either the general policy improvement (GPI) or trust-region learning (TRL) frameworks. However, algorithms that strictly respect these theoretical frameworks have proven unscalable. Surprisingly, the only known scalable algorithms violate the GPI/TRL assumptions, e.g. due to required regularisation or other heuristics. The current explanation of their empirical success is essentially “by analogy”: they are deemed approximate adaptations of theoretically sound methods. Unfortunately, studies have shown that in practice these algorithms differ greatly from their conceptual ancestors. In contrast, in this paper, we introduce a novel theoretical framework, named Mirror Learning, which provides theoretical guarantees to a large class of algorithms, including TRPO and PPO. While the latter two exploit the flexibility of our framework, GPI and TRL fit in merely as pathologically restrictive corner cases thereof. This suggests that the empirical performance of state-of-the-art methods is a direct consequence of their theoretical properties, rather than of aforementioned approximate analogies. Mirror learning sets us free to boldly explore novel, theoretically sound RL algorithms, a thus far uncharted wonderland.

Author Information

Jakub Grudzien Kuba (University of Oxford)
Christian Schroeder de Witt (University of Oxford)
Jakob Foerster (Oxford university)
Jakob Foerster

Jakob Foerster started as an Associate Professor at the department of engineering science at the University of Oxford in the fall of 2021. During his PhD at Oxford he helped bring deep multi-agent reinforcement learning to the forefront of AI research and interned at Google Brain, OpenAI, and DeepMind. After his PhD he worked as a research scientist at Facebook AI Research in California, where he continued doing foundational work. He was the lead organizer of the first Emergent Communication workshop at NeurIPS in 2017, which he has helped organize ever since and was awarded a prestigious CIFAR AI chair in 2019. His past work addresses how AI agents can learn to cooperate and communicate with other agents, most recently he has been developing and addressing the zero-shot coordination problem setting, a crucial step towards human-AI coordination.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors