Timezone: »

 
Spotlight
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Volodymyr Kuleshov · Shachi Deshpande

Thu Jul 21 01:50 PM -- 01:55 PM (PDT) @ Room 310

Accurate probabilistic predictions can be characterized by two properties—calibration and sharpness. However, standard maximum likelihood training yields models that are poorly calibrated and thus inaccurate—a 90% confidence interval typically does not contain the true outcome 90% of the time. This paper argues that calibration is important in practice and is easy to maintain by performing low-dimensional density estimation. We introduce a simple training procedure based on recalibration that yields calibrated models without sacrificing overall performance; unlike previous approaches, ours ensures the most general property of distribution calibration and applies to any model, including neural networks. We formally prove the correctness of our procedure assuming that we can estimate densities in low dimensions and we establish uniform convergence bounds. Our results yield empirical performance improvements on linear and deep Bayesian models and suggest that calibration should be increasingly leveraged across machine learning.

Author Information

Volodymyr Kuleshov (Cornell University)
Shachi Deshpande (Cornell University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2019 : Networking Lunch (provided) + Poster Session »
    Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki
  • 2019 : Towards a Sustainable Food Supply Chain Powered by Artificial Intelligence »
    Volodymyr Kuleshov
  • 2019 Poster: Calibrated Model-Based Deep Reinforcement Learning »
    Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon
  • 2019 Oral: Calibrated Model-Based Deep Reinforcement Learning »
    Ali Malik · Volodymyr Kuleshov · Jiaming Song · Danny Nemer · Harlan Seymour · Stefano Ermon
  • 2018 Poster: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
    Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon
  • 2018 Oral: Accurate Uncertainties for Deep Learning Using Calibrated Regression »
    Volodymyr Kuleshov · Nathan Fenner · Stefano Ermon