Timezone: »

 
Oral
Deletion Robust Submodular Maximization over Matroids
PAUL DUETTING · Federico Fusco · Silvio Lattanzi · Ashkan Norouzi-Fard · Morteza Zadimoghaddam

Thu Jul 21 11:05 AM -- 11:25 AM (PDT) @ None
Maximizing a monotone submodular function is a fundamental task in machine learning. In this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(3.582+O(\varepsilon))$-approximation algorithm with summary size $O(k + \frac{d \log k}{\varepsilon^2})$. In the streaming setting we provide a $(5.582+O(\varepsilon))$-approximation algorithm with summary size and memory $O(k + \frac{d \log k}{\varepsilon^2})$. We complement our theoretical results with an in-depth experimental analysis showing the effectiveness of our algorithms on real-world datasets.

Author Information

PAUL DUETTING (Google)
Federico Fusco (Sapienza University of Rome)
Silvio Lattanzi (Google)
Ashkan Norouzi-Fard (Google)
Morteza Zadimoghaddam (Google)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors