Timezone: »

 
Poster
How to Leverage Unlabeled Data in Offline Reinforcement Learning
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine

Thu Jul 21 03:00 PM -- 05:00 PM (PDT) @ Hall E #1019

Offline reinforcement learning (RL) can learn control policies from static datasets but, like standard RL methods, it requires reward annotations for every transition. In many cases, labeling large datasets with rewards may be costly, especially if those rewards must be provided by human labelers, while collecting diverse unlabeled data might be comparatively inexpensive. How can we best leverage such unlabeled data in offline RL? One natural solution is to learn a reward function from the labeled data and use it to label the unlabeled data. In this paper, we find that, perhaps surprisingly, a much simpler method that simply applies zero rewards to unlabeled data leads to effective data sharing both in theory and in practice, without learning any reward model at all. While this approach might seem strange (and incorrect) at first, we provide extensive theoretical and empirical analysis that illustrates how it trades off reward bias, sample complexity and distributional shift, often leading to good results. We characterize conditions under which this simple strategy is effective, and further show that extending it with a simple reweighting approach can further alleviate the bias introduced by using incorrect reward labels. Our empirical evaluation confirms these findings in simulated robotic locomotion, navigation, and manipulation settings.

Author Information

Tianhe (Kevin) Yu (Stanford University)
Aviral Kumar (UC Berkeley)
Yevgen Chebotar (Google)
Karol Hausman (Google Brain)
Chelsea Finn (Stanford)

Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Finn's research interests lie in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, her work has included deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for learning reward functions underlying behavior, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelor's degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Microsoft Research Faculty Fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across four universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors