Timezone: »
Distributions over discrete sets capture the essential statistics including the high-order correlation among elements. Such information provides powerful insight for decision making across various application domains, e.g., product assortment based on product distribution in shopping carts. While deep generative models trained on pre-collected data can capture existing distributions, such pre-trained models are usually not capable of aligning with a target domain in the presence of distribution shift due to reasons such as temporal shift or the change in the population mix. We develop a general framework to adapt a generative model subject to a (possibly counterfactual) target data distribution with both sampling and computation efficiency. Concretely, instead of re-training a full model from scratch, we reuse the learned modules to preserve the correlations between set elements, while only adjusting corresponding components to align with target marginal constraints. We instantiate the approach for three commonly used forms of discrete set distribution---latent variable, autoregressive, and energy based models---and provide efficient solutions for marginal-constrained optimization in either primal or dual forms. Experiments on both synthetic and real-world e-commerce and EHR datasets show that the proposed framework is able to practically align a generative model to match marginal constraints under distribution shift.
Author Information
Hanjun Dai (Google Brain)
Mengjiao Yang (Google Brain)
Yuan Xue (Google)
Dale Schuurmans (Google / University of Alberta)
Bo Dai (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Tue. Jul 19th 03:45 -- 03:50 PM Room Room 310
More from the Same Authors
-
2023 : DISCS: A Benchmark for Discrete Sampling »
Katayoon Goshvadi · Haoran Sun · Xingchao Liu · Azade Nova · Ruqi Zhang · Will Grathwohl · Dale Schuurmans · Hanjun Dai -
2023 Workshop: Sampling and Optimization in Discrete Space »
Haoran Sun · Hanjun Dai · Priyank Jaini · Ruqi Zhang · Ellen Vitercik -
2023 Poster: Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2023 Poster: Revisiting Sampling for Combinatorial Optimization »
Haoran Sun · Katayoon Goshvadi · Azade Nova · Dale Schuurmans · Hanjun Dai -
2023 Poster: Gradient-Free Structured Pruning with Unlabeled Data »
Azade Nova · Hanjun Dai · Dale Schuurmans -
2022 Poster: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Poster: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Poster: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Spotlight: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2021 : Invited Speaker: Bo Dai: Leveraging Non-uniformity in Policy Gradient »
Bo Dai -
2021 Poster: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Representation Matters: Offline Pretraining for Sequential Decision Making »
Mengjiao Yang · Ofir Nachum -
2021 Spotlight: Representation Matters: Offline Pretraining for Sequential Decision Making »
Mengjiao Yang · Ofir Nachum -
2021 Poster: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Energy-Based Processes for Exchangeable Data »
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans -
2020 Poster: ConQUR: Mitigating Delusional Bias in Deep Q-Learning »
DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search »
Binghong Chen · Chengtao Li · Hanjun Dai · Le Song -
2020 Poster: An Optimistic Perspective on Offline Deep Reinforcement Learning »
Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi -
2020 Poster: Learning To Stop While Learning To Predict »
Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2019 Poster: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Poster: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Poster: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans