Timezone: »
A variety of fairness constraints have been proposed in the literature to mitigate group-level statistical bias. Their impacts have been largely evaluated for different groups of populations corresponding to a set of sensitive attributes, such as race or gender. Nonetheless, the community has not observed sufficient explorations for how imposing fairness constraints fare at an instance level. Building on the concept of influence function, a measure that characterizes the impact of a training example on the target model and its predictive performance, this work studies the influence of training examples when fairness constraints are imposed. We find out that under certain assumptions, the influence function with respect to fairness constraints can be decomposed into a kernelized combination of training examples. One promising application of the proposed fairness influence function is to identify suspicious training examples that may cause model discrimination by ranking their influence scores. We demonstrate with extensive experiments that training on a subset of weighty data examples leads to lower fairness violations with a trade-off of accuracy.
Author Information
Jialu Wang (University of California, Santa Cruz)
Xin Eric Wang (University of California, Santa Cruz)
Yang Liu (UC Santa Cruz)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Understanding Instance-Level Impact of Fairness Constraints »
Thu. Jul 21st 06:30 -- 06:35 PM Room Room 307
More from the Same Authors
-
2020 : Contributed Talk: Incentives for Federated Learning: a Hypothesis Elicitation Approach »
Yang Liu · Jiaheng Wei -
2020 : Contributed Talk: Linear Models are Robust Optimal Under Strategic Behavior »
Wei Tang · Chien-Ju Ho · Yang Liu -
2021 : Linear Classifiers that Encourage Constructive Adaptation »
Yatong Chen · Jialu Wang · Yang Liu -
2021 : When Optimizing f-divergence is Robust with Label Noise »
Jiaheng Wei · Yang Liu -
2022 : Adaptive Data Debiasing Through Bounded Exploration »
Yifan Yang · Yang Liu · Parinaz Naghizadeh -
2023 : To Aggregate or Not? Learning with Separate Noisy Labels »
Jiaheng Wei · Zhaowei Zhu · Tianyi Luo · Ehsan Amid · Abhishek Kumar · Yang Liu -
2023 : Understanding Unfairness via Training Concept Influence »
Yuanshun Yao · Yang Liu -
2023 : Towards an Efficient Algorithm for Time Series Forecasting with Anomalies »
Hao Cheng · Qingsong Wen · Yang Liu · Liang Sun -
2023 Workshop: DMLR Workshop: Data-centric Machine Learning Research »
Ce Zhang · Praveen Paritosh · Newsha Ardalani · Nezihe Merve Gürel · William Gaviria Rojas · Yang Liu · Rotem Dror · Manil Maskey · Lilith Bat-Leah · Tzu-Sheng Kuo · Luis Oala · Max Bartolo · Ludwig Schmidt · Alicia Parrish · Daniel Kondermann · Najoung Kim -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes »
Zhaowei Zhu · Yuanshun Yao · Jiankai Sun · Hang Li · Yang Liu -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object Navigation »
Kaiwen Zhou · Kaizhi Zheng · Connor Pryor · Yilin Shen · Hongxia Jin · Lise Getoor · Xin Eric Wang -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Poster: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Spotlight: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Spotlight: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Spotlight: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Spotlight: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Poster: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2021 Oral: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2020 Workshop: Incentives in Machine Learning »
Boi Faltings · Yang Liu · David Parkes · Goran Radanovic · Dawn Song -
2020 Poster: Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates »
Yang Liu · Hongyi Guo -
2019 Poster: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Oral: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes