Timezone: »
Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 pt, np} computational cost at iteration t where pt never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.
Author Information
Niloy Biswas (Harvard University)
Lester Mackey (Microsoft Research)
Xiao-Li Meng (Harvard University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Scalable Spike-and-Slab »
Tue. Jul 19th through Wed the 20th Room Hall E #713
More from the Same Authors
-
2021 : SNoB: Social Norm Bias of “Fair” Algorithms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2021 : Are You Man Enough? Even Fair Algorithms Conform to Societal Norms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2023 : Adaptive Bias Correction for Improved Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2021 : Lester Mackey: Online Learning with Optimism and Delay »
Lester Mackey -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 Poster: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2019 Oral: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Poster: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis