Timezone: »
Mean rewards of actions are often correlated. The form of these correlations may be complex and unknown a priori, such as the preferences of users for recommended products and their categories. To maximize statistical efficiency, it is important to leverage these correlations when learning. We formulate a bandit variant of this problem where the correlations of mean action rewards are represented by a hierarchical Bayesian model with latent variables. Since the hierarchy can have multiple layers, we call it deep. We propose a hierarchical Thompson sampling algorithm (HierTS) for this problem and show how to implement it efficiently for Gaussian hierarchies. The efficient implementation is possible due to a novel exact hierarchical representation of the posterior, which itself is of independent interest. We use this exact posterior to analyze the Bayes regret of HierTS. Our regret bounds reflect the structure of the problem, that the regret decreases with more informative priors, and can be recast to highlight reduced dependence on the number of actions. We confirm these theoretical findings empirically, in both synthetic and real-world experiments.
Author Information
Joey Hong (Berkeley)
Branislav Kveton (Google Research)
Sumeet Katariya (UW-Madison and Amazon)
Manzil Zaheer (Google Research)
Mohammad Ghavamzadeh (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Deep Hierarchy in Bandits »
Thu. Jul 21st through Fri the 22nd Room Hall E #1309
More from the Same Authors
-
2022 : Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms »
MohammadJavad Azizi · Thang Duong · Yasin Abbasi-Yadkori · Claire Vernade · Andras Gyorgy · Mohammad Ghavamzadeh -
2023 Poster: Multi-Task Off-Policy Learning from Bandit Feedback »
Joey Hong · Branislav Kveton · Manzil Zaheer · Sumeet Katariya · Mohammad Ghavamzadeh -
2023 Poster: Thompson Sampling with Diffusion Generative Prior »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Bloebaum -
2023 Poster: Multiplier Bootstrap-based Exploration »
Runzhe Wan · Haoyu Wei · Branislav Kveton · Rui Song -
2023 Workshop: The Many Facets of Preference-Based Learning »
Aadirupa Saha · Mohammad Ghavamzadeh · Robert Busa-Fekete · Branislav Kveton · Viktor Bengs -
2022 Poster: Safe Exploration for Efficient Policy Evaluation and Comparison »
Runzhe Wan · Branislav Kveton · Rui Song -
2022 Poster: A Context-Integrated Transformer-Based Neural Network for Auction Design »
Zhijian Duan · Jingwu Tang · Yutong Yin · Zhe Feng · Xiang Yan · Manzil Zaheer · Xiaotie Deng -
2022 Spotlight: Safe Exploration for Efficient Policy Evaluation and Comparison »
Runzhe Wan · Branislav Kveton · Rui Song -
2022 Spotlight: A Context-Integrated Transformer-Based Neural Network for Auction Design »
Zhijian Duan · Jingwu Tang · Yutong Yin · Zhe Feng · Xiang Yan · Manzil Zaheer · Xiaotie Deng -
2022 Poster: Feature and Parameter Selection in Stochastic Linear Bandits »
Ahmadreza Moradipari · Berkay Turan · Yasin Abbasi-Yadkori · Mahnoosh Alizadeh · Mohammad Ghavamzadeh -
2022 Poster: Private Adaptive Optimization with Side information »
Tian Li · Manzil Zaheer · Sashank Jakkam Reddi · Virginia Smith -
2022 Poster: Robust Training of Neural Networks Using Scale Invariant Architectures »
Zhiyuan Li · Srinadh Bhojanapalli · Manzil Zaheer · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Spotlight: Private Adaptive Optimization with Side information »
Tian Li · Manzil Zaheer · Sashank Jakkam Reddi · Virginia Smith -
2022 Oral: Robust Training of Neural Networks Using Scale Invariant Architectures »
Zhiyuan Li · Srinadh Bhojanapalli · Manzil Zaheer · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Spotlight: Feature and Parameter Selection in Stochastic Linear Bandits »
Ahmadreza Moradipari · Berkay Turan · Yasin Abbasi-Yadkori · Mahnoosh Alizadeh · Mohammad Ghavamzadeh -
2022 Poster: StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models »
Adam Liska · Tomas Kocisky · Elena Gribovskaya · Tayfun Terzi · Eren Sezener · Devang Agrawal · Cyprien de Masson d'Autume · Tim Scholtes · Manzil Zaheer · Susannah Young · Ellen Gilsenan-McMahon · Sophia Austin · Phil Blunsom · Angeliki Lazaridou -
2022 Poster: Knowledge Base Question Answering by Case-based Reasoning over Subgraphs »
Rajarshi Das · Ameya Godbole · Ankita Rajaram Naik · Elliot Tower · Manzil Zaheer · Hannaneh Hajishirzi · Robin Jia · Andrew McCallum -
2022 Spotlight: Knowledge Base Question Answering by Case-based Reasoning over Subgraphs »
Rajarshi Das · Ameya Godbole · Ankita Rajaram Naik · Elliot Tower · Manzil Zaheer · Hannaneh Hajishirzi · Robin Jia · Andrew McCallum -
2022 Spotlight: StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models »
Adam Liska · Tomas Kocisky · Elena Gribovskaya · Tayfun Terzi · Eren Sezener · Devang Agrawal · Cyprien de Masson d'Autume · Tim Scholtes · Manzil Zaheer · Susannah Young · Ellen Gilsenan-McMahon · Sophia Austin · Phil Blunsom · Angeliki Lazaridou -
2021 Poster: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Spotlight: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Poster: Latent Programmer: Discrete Latent Codes for Program Synthesis »
Joey Hong · David Dohan · Rishabh Singh · Charles Sutton · Manzil Zaheer -
2021 Oral: Latent Programmer: Discrete Latent Codes for Program Synthesis »
Joey Hong · David Dohan · Rishabh Singh · Charles Sutton · Manzil Zaheer -
2021 Poster: Federated Composite Optimization »
Honglin Yuan · Manzil Zaheer · Sashank Jakkam Reddi -
2021 Spotlight: Federated Composite Optimization »
Honglin Yuan · Manzil Zaheer · Sashank Jakkam Reddi -
2020 Poster: Robust Outlier Arm Identification »
Yinglun Zhu · Sumeet Katariya · Robert Nowak -
2020 Poster: Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems »
Tong Yu · Branislav Kveton · Zheng Wen · Ruiyi Zhang · Ole J. Mengshoel -
2019 Poster: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Oral: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2017 Poster: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt -
2017 Poster: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Model-Independent Online Learning for Influence Maximization »
Sharan Vaswani · Branislav Kveton · Zheng Wen · Mohammad Ghavamzadeh · Laks V.S Lakshmanan · Mark Schmidt