Timezone: »
We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyper-parameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.
Author Information
Filip Tronarp (University of Tübingen)
Nathanael Bosch (University of Tübingen)
Philipp Hennig (University of Tuebingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Fenrir: Physics-Enhanced Regression for Initial Value Problems »
Tue. Jul 19th through Wed the 20th Room Hall E #738
More from the Same Authors
-
2022 Poster: Probabilistic ODE Solutions in Millions of Dimensions »
Nicholas Krämer · Nathanael Bosch · Jonathan Schmidt · Philipp Hennig -
2022 Poster: Preconditioning for Scalable Gaussian Process Hyperparameter Optimization »
Jonathan Wenger · Geoff Pleiss · Philipp Hennig · John Cunningham · Jacob Gardner -
2022 Oral: Preconditioning for Scalable Gaussian Process Hyperparameter Optimization »
Jonathan Wenger · Geoff Pleiss · Philipp Hennig · John Cunningham · Jacob Gardner -
2022 Spotlight: Probabilistic ODE Solutions in Millions of Dimensions »
Nicholas Krämer · Nathanael Bosch · Jonathan Schmidt · Philipp Hennig -
2020 Poster: Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2020 Poster: Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems »
Hans Kersting · Nicholas Krämer · Martin Schiegg · Christian Daniel · Michael Schober · Philipp Hennig