Timezone: »
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks. Joint training reduces computation costs and improves data efficiency; however, since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts. A common method for alleviating this issue is to combine per-task gradients into a joint update direction using a particular heuristic. In this paper, we propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update. Under certain assumptions, the bargaining problem has a unique solution, known as the \emph{Nash Bargaining Solution}, which we propose to use as a principled approach to multi-task learning. We describe a new MTL optimization procedure, Nash-MTL, and derive theoretical guarantees for its convergence. Empirically, we show that Nash-MTL achieves state-of-the-art results on multiple MTL benchmarks in various domains.
Author Information
Aviv Navon (Bar-Ilan University)
Aviv Shamsian (Bar Ilan University)
Idan Achituve (Bar-Ilan)
Haggai Maron (NVIDIA Research)
I am a Research Scientist at NVIDIA Research. My main fields of interest are machine learning, optimization, and shape analysis. More specifically, I am working on applying deep learning to irregular domains (e.g., graphs, point clouds, and surfaces) and graph/shape matching problems. I completed my Ph.D. in 2019 at the Department of Computer Science and Applied Mathematics at the Weizmann Institute of Science under the supervision of Prof. Yaron Lipman.
Kenji Kawaguchi (National University of Singapore)
Gal Chechik (NVIDIA / Bar-Ilan University)
Ethan Fetaya (Bar-Ilan University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Multi-Task Learning as a Bargaining Game »
Tue. Jul 19th 02:30 -- 02:35 PM Room Room 318 - 320
More from the Same Authors
-
2023 : Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks »
Yuzhen Mao · Zhun Deng · Huaxiu Yao · Ting Ye · Kenji Kawaguchi · James Zou -
2023 : Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 : Expressive Sign Equivariant Networks for Spectral Geometric Learning »
Derek Lim · Joshua Robinson · Stefanie Jegelka · Haggai Maron -
2023 Oral: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: GFlowOut: Dropout with Generative Flow Networks »
Dianbo Liu · Moksh Jain · Bonaventure F. P. Dossou · Qianli Shen · Salem Lahlou · Anirudh Goyal · Nikolay Malkin · Chris Emezue · Dinghuai Zhang · Nadhir Hassen · Xu Ji · Kenji Kawaguchi · Yoshua Bengio -
2023 Poster: Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 Poster: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Oral: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Poster: Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation »
Jeffrey Willette · Seanie Lee · Bruno Andreis · Kenji Kawaguchi · Juho Lee · Sung Ju Hwang -
2023 Poster: How Does Information Bottleneck Help Deep Learning? »
Kenji Kawaguchi · Zhun Deng · Xu Ji · Jiaoyang Huang -
2023 Poster: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Poster: Graph Positional Encoding via Random Feature Propagation »
Moshe Eliasof · Fabrizio Frasca · Beatrice Bevilacqua · Eran Treister · Gal Chechik · Haggai Maron -
2023 Poster: Auxiliary Learning as an Asymmetric Bargaining Game »
Aviv Shamsian · Aviv Navon · Neta Glazer · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2022 Poster: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Spotlight: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Spotlight: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Robustness Implies Generalization via Data-Dependent Generalization Bounds »
Kenji Kawaguchi · Zhun Deng · Kyle Luh · Jiaoyang Huang -
2022 Oral: Robustness Implies Generalization via Data-Dependent Generalization Bounds »
Kenji Kawaguchi · Zhun Deng · Kyle Luh · Jiaoyang Huang -
2021 Poster: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Spotlight: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Poster: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Spotlight: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Poster: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2021 Poster: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2021 Poster: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2021 Spotlight: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2021 Spotlight: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2020 Poster: On Learning Sets of Symmetric Elements »
Haggai Maron · Or Litany · Gal Chechik · Ethan Fetaya -
2020 Poster: Learning Algebraic Multigrid Using Graph Neural Networks »
Ilay Luz · Meirav Galun · Haggai Maron · Ronen Basri · Irad Yavneh