Timezone: »
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare by assisting decision-makers to answer "what-if" questions. Existing causal inference approaches typically consider regular, discrete-time intervals between observations and treatment decisions and hence are unable to naturally model irregularly sampled data, which is the common setting in practice. To handle arbitrary observation patterns, we interpret the data as samples from an underlying continuous-time process and propose to model its latent trajectory explicitly using the mathematics of controlled differential equations. This leads to a new approach, the Treatment Effect Neural Controlled Differential Equation (TE-CDE), that allows the potential outcomes to be evaluated at any time point. In addition, adversarial training is used to adjust for time-dependent confounding which is critical in longitudinal settings and is an added challenge not encountered in conventional time series. To assess solutions to this problem, we propose a controllable simulation environment based on a model of tumor growth for a range of scenarios with irregular sampling reflective of a variety of clinical scenarios. TE-CDE consistently outperforms existing approaches in all scenarios with irregular sampling.
Author Information
Nabeel Seedat (University of Cambridge)
Fergus Imrie (University of California, Los Angeles)
Alexis Bellot (University of Cambridge)
Zhaozhi Qian (University of Cambridge)
Mihaela van der Schaar (University of Cambridge and UCLA)

Professor van der Schaar is John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge, a Turing Faculty Fellow at The Alan Turing Institute in London, and Chancellor's Professor at UCLA. She was elected IEEE Fellow in 2009. She has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), an NSF Career Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award. She holds 35 granted USA patents. In 2019, she was identified by National Endowment for Science, Technology and the Arts as the female researcher based in the UK with the most publications in the field of AI. She was also elected as a 2019 "Star in Computer Networking and Communications". Her current research focus is on machine learning, AI and operations research for healthcare and medicine. For more details, see her website: http://www.vanderschaar-lab.com/
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations »
Thu. Jul 21st 05:40 -- 05:45 PM Room Hall G
More from the Same Authors
-
2023 Poster: Synthetic Data, Real Errors: How (Not) to Publish and Use Synthetic Data »
Boris van Breugel · Zhaozhi Qian · Mihaela van der Schaar -
2023 Poster: Learning Representations without Compositional Assumptions »
Tennison Liu · Jeroen Berrevoets · Zhaozhi Qian · Mihaela van der Schaar -
2023 Poster: Differentiable and Transportable Structure Learning »
Jeroen Berrevoets · Nabeel Seedat · Fergus Imrie · Mihaela van der Schaar -
2022 Poster: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan CrabbĂ© · Mihaela van der Schaar -
2022 Spotlight: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan CrabbĂ© · Mihaela van der Schaar -
2022 Poster: Neural Laplace: Learning diverse classes of differential equations in the Laplace domain »
Samuel Holt · Zhaozhi Qian · Mihaela van der Schaar -
2022 Oral: Neural Laplace: Learning diverse classes of differential equations in the Laplace domain »
Samuel Holt · Zhaozhi Qian · Mihaela van der Schaar -
2021 : Mihaela Van der Schaar: Time-series in healthcare: challenges and solutions »
Mihaela van der Schaar -
2021 : Quantitative epistemology: conceiving a new human-machine partnership »
Mihaela van der Schaar -
2021 Poster: Policy Analysis using Synthetic Controls in Continuous-Time »
Alexis Bellot · Mihaela van der Schaar -
2021 Spotlight: Policy Analysis using Synthetic Controls in Continuous-Time »
Alexis Bellot · Mihaela van der Schaar -
2021 Poster: Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis »
Jeroen Berrevoets · Ahmed Alaa · Zhaozhi Qian · James Jordon · alexander gimson · Mihaela van der Schaar -
2021 Spotlight: Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis »
Jeroen Berrevoets · Ahmed Alaa · Zhaozhi Qian · James Jordon · alexander gimson · Mihaela van der Schaar -
2021 : Synthetic Healthcare Data Generation and Assessment: Challenges, Methods, and Impact on Machine Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "Automated ML and its transformative impact on medicine and healthcare" by Mihaela van der Schaar »
Mihaela van der Schaar -
2020 : Invited Talk: Learning despite the unknown - missing data imputation in healthcare »
Mihaela van der Schaar -
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar -
2019 Poster: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Oral: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar