Timezone: »
Spotlight
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Zhaowei Zhu · Jialu Wang · Yang Liu
Wed Jul 20 07:55 AM -- 08:00 AM (PDT) @ Ballroom 3 & 4
The label noise transition matrix, denoting the transition probabilities from clean labels to noisy labels, is crucial for designing statistically robust solutions. Existing estimators for noise transition matrices, e.g., using either anchor points or clusterability, focus on computer vision tasks that are relatively easier to obtain high-quality representations. We observe that tasks with lower-quality features fail to meet the anchor-point or clusterability condition, due to the coexistence of both uninformative and informative representations. To handle this issue, we propose a generic and practical information-theoretic approach to down-weight the less informative parts of the lower-quality features. This improvement is crucial to identifying and estimating the label noise transition matrix. The salient technical challenge is to compute the relevant information-theoretical metrics using only noisy labels instead of clean ones. We prove that the celebrated $f$-mutual information measure can often preserve the order when calculated using noisy labels. We then build our transition matrix estimator using this distilled version of features. The necessity and effectiveness of the proposed method are also demonstrated by evaluating the estimation error on a varied set of tabular data and text classification tasks with lower-quality features. Code is available at github.com/UCSC-REAL/BeyondImages.
Author Information
Zhaowei Zhu (University of California, Santa Cruz)
Jialu Wang (University of California, Santa Cruz)
Yang Liu (UC Santa Cruz)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Wed. Jul 20th through Thu the 21st Room Hall E #517
More from the Same Authors
-
2020 : Contributed Talk: Incentives for Federated Learning: a Hypothesis Elicitation Approach »
Yang Liu · Jiaheng Wei -
2020 : Contributed Talk: Linear Models are Robust Optimal Under Strategic Behavior »
Wei Tang · Chien-Ju Ho · Yang Liu -
2021 : Linear Classifiers that Encourage Constructive Adaptation »
Yatong Chen · Jialu Wang · Yang Liu -
2021 : When Optimizing f-divergence is Robust with Label Noise »
Jiaheng Wei · Yang Liu -
2022 : Adaptive Data Debiasing Through Bounded Exploration »
Yifan Yang · Yang Liu · Parinaz Naghizadeh -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes »
Zhaowei Zhu · Yuanshun Yao · Jiankai Sun · Hang Li · Yang Liu -
2023 Workshop: DMLR Workshop: Data-centric Machine Learning Research »
Ce Zhang · Praveen Paritosh · Newsha Ardalani · Nezihe Merve Gürel · William Gaviria Rojas · Yang Liu · Rotem Dror · Manil Maskey · Lilith Bat-Leah · Tzu-Sheng Kuo · Luis Oala · Max Bartolo · Ludwig Schmidt · Alicia Parrish · Daniel Kondermann · Najoung Kim -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Poster: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Spotlight: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Spotlight: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Spotlight: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Poster: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2021 Oral: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Yang Liu -
2020 Workshop: Incentives in Machine Learning »
Boi Faltings · Yang Liu · David Parkes · Goran Radanovic · Dawn Song -
2020 Poster: Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates »
Yang Liu · Hongyi Guo -
2019 Poster: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Oral: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes