Timezone: »

Anarchic Federated Learning
Haibo Yang · Xin Zhang · Prashant Khanduri · Jia Liu

Thu Jul 21 01:00 PM -- 01:20 PM (PDT) @ Room 327 - 329

Present-day federated learning (FL) systems deployed over edge networks consists of a large number of workers with high degrees of heterogeneity in data and/or computing capabilities, which call for flexible worker participation in terms of timing, effort, data heterogeneity, etc. To satisfy the need for flexible worker participation, we consider a new FL paradigm called ``Anarchic Federated Learning'' (AFL) in this paper. In stark contrast to conventional FL models, each worker in AFL has the freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, such chaotic worker behaviors in AFL impose many new open questions in algorithm design. In particular, it remains unclear whether one could develop convergent AFL training algorithms, and if yes, under what conditions and how fast the achievable convergence speed is. Toward this end, we propose two Anarchic Federated Averaging (AFA) algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFA-CD and AFA-CS, respectively. Somewhat surprisingly, we show that, under mild anarchic assumptions, both AFL algorithms achieve the best known convergence rate as the state-of-the-art algorithms for conventional FL. Moreover, they retain the highly desirable {\em linear speedup effect} with respect of both the number of workers and local steps in the new AFL paradigm. We validate the proposed algorithms with extensive experiments on real-world datasets.

Author Information

Haibo Yang (The Ohio State University)
Xin Zhang (Iowa State University)
Prashant Khanduri (University Of Minnesota)
Jia Liu (The Ohio State University)
Jia Liu

ia (Kevin) Liu is an Assistant Professor in the Dept. of Electrical and Computer Engineering at The Ohio State University and an Amazon Visiting Academics (AVA). He received his Ph.D. degree from the Dept. of Electrical and Computer Engineering at Virginia Tech in 2010. From Aug. 2017 to Aug. 2020, he was an Assistant Professor in the Dept. of Computer Science at Iowa State University. His research areas include theoretical machine learning, stochastic network optimization and control, and performance analysis for data analytics infrastructure and cyber-physical systems. Dr. Liu is a senior member of IEEE and a member of ACM. He has received numerous awards at top venues, including IEEE INFOCOM'19 Best Paper Award, IEEE INFOCOM'16 Best Paper Award, IEEE INFOCOM'13 Best Paper Runner-up Award, IEEE INFOCOM'11 Best Paper Runner-up Award, IEEE ICC'08 Best Paper Award, and honors of long/spotlight presentations at ICML, NeurIPS, and ICLR. He is an NSF CAREER Award recipient in 2020 and a winner of the Google Faculty Research Award in 2020. He received the LAS Award for Early Achievement in Research at Iowa State University in 2020, and the Bell Labs President Gold Award. His research is supported by NSF, AFOSR, AFRL, and ONR.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors