Timezone: »
We propose a method for training ordinary differential equations by using a control-theoretic Lyapunov condition for stability. Our approach, called LyaNet, is based on a novel Lyapunov loss formulation that encourages the inference dynamics to converge quickly to the correct prediction. Theoretically, we show that minimizing Lyapunov loss guarantees exponential convergence to the correct solution and enables a novel robustness guarantee. We also provide practical algorithms, including one that avoids the cost of backpropagating through a solver or using the adjoint method. Relative to standard Neural ODE training, we empirically find that LyaNet can offer improved prediction performance, faster convergence of inference dynamics, and improved adversarial robustness. Our code is available at https://github.com/ivandariojr/LyapunovLearning.
Author Information
Ivan Dario Jimenez Rodriguez (California Institute of Technology)
Aaron Ames (Caltech)
Yisong Yue (Caltech)

Yisong Yue is a Professor of Computing and Mathematical Sciences at Caltech and (via sabbatical) a Principal Scientist at Latitude AI. His research interests span both fundamental and applied pursuits, from novel learning-theoretic frameworks all the way to deep learning deployed in autonomous driving on public roads. His work has been recognized with multiple paper awards and nominations, including in robotics, computer vision, sports analytics, machine learning for health, and information retrieval. At Latitude AI, he is working on machine learning approaches to motion planning for autonomous driving.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: LyaNet: A Lyapunov Framework for Training Neural ODEs »
Tue. Jul 19th 03:35 -- 03:40 PM Room Room 327 - 329
More from the Same Authors
-
2023 Poster: Multi-species multi-task benchmark for learned representations of behavior »
Jennifer J. Sun · Markus Marks · Andrew Ulmer · Dipam Chakraborty · Brian Geuther · Edward Hayes · Heng Jia · Vivek Kumar · Sebastian Oleszko · Zachary Partridge · Milan Peelman · Alice Robie · Catherine Schretter · Keith Sheppard · Chao Sun · Param Uttarwar · Julian Wagner · Erik Werner · Joseph Parker · Pietro Perona · Yisong Yue · Kristin Branson · Ann Kennedy -
2023 Poster: Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation »
Fengxue Zhang · Jialin Song · James Bowden · Alexander Ladd · Yisong Yue · Thomas Desautels · Yuxin Chen -
2023 Poster: Eventual Discounting Temporal Logic Counterfactual Experience Replay »
Cameron Voloshin · Abhinav Verma · Yisong Yue -
2022 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Mojmir Mutny · Willie Neiswanger · Ilija Bogunovic · Stefano Ermon · Yisong Yue · Andreas Krause -
2022 Poster: Investigating Generalization by Controlling Normalized Margin »
Alexander Farhang · Jeremy Bernstein · Kushal Tirumala · Yang Liu · Yisong Yue -
2022 Spotlight: Investigating Generalization by Controlling Normalized Margin »
Alexander Farhang · Jeremy Bernstein · Kushal Tirumala · Yang Liu · Yisong Yue -
2021 : Personalized Preference Learning - from Spinal Cord Stimulation to Exoskeletons »
Yisong Yue -
2021 Poster: Learning by Turning: Neural Architecture Aware Optimisation »
Yang Liu · Jeremy Bernstein · Markus Meister · Yisong Yue -
2021 Spotlight: Learning by Turning: Neural Architecture Aware Optimisation »
Yang Liu · Jeremy Bernstein · Markus Meister · Yisong Yue -
2020 Workshop: Real World Experiment Design and Active Learning »
Ilija Bogunovic · Willie Neiswanger · Yisong Yue -
2020 Poster: Learning Calibratable Policies using Programmatic Style-Consistency »
Eric Zhan · Albert Tseng · Yisong Yue · Adith Swaminathan · Matthew Hausknecht -
2020 Poster: Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis »
Jung Yeon Park · Kenneth Carr · Stephan Zheng · Yisong Yue · Rose Yu -
2019 Workshop: Real-world Sequential Decision Making: Reinforcement Learning and Beyond »
Hoang Le · Yisong Yue · Adith Swaminathan · Byron Boots · Ching-An Cheng -
2019 Poster: Batch Policy Learning under Constraints »
Hoang Le · Cameron Voloshin · Yisong Yue -
2019 Oral: Batch Policy Learning under Constraints »
Hoang Le · Cameron Voloshin · Yisong Yue -
2019 Poster: Control Regularization for Reduced Variance Reinforcement Learning »
Richard Cheng · Abhinav Verma · Gabor Orosz · Swarat Chaudhuri · Yisong Yue · Joel Burdick -
2019 Oral: Control Regularization for Reduced Variance Reinforcement Learning »
Richard Cheng · Abhinav Verma · Gabor Orosz · Swarat Chaudhuri · Yisong Yue · Joel Burdick -
2018 Poster: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Oral: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Oral: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Poster: Stagewise Safe Bayesian Optimization with Gaussian Processes »
Yanan Sui · Vincent Zhuang · Joel Burdick · Yisong Yue -
2018 Oral: Stagewise Safe Bayesian Optimization with Gaussian Processes »
Yanan Sui · Vincent Zhuang · Joel Burdick · Yisong Yue -
2018 Tutorial: Imitation Learning »
Yisong Yue · Hoang Le -
2017 Poster: Coordinated Multi-Agent Imitation Learning »
Hoang Le · Yisong Yue · Peter Carr · Patrick Lucey -
2017 Talk: Coordinated Multi-Agent Imitation Learning »
Hoang Le · Yisong Yue · Peter Carr · Patrick Lucey