Timezone: »
We propose discrete Langevin proposal (DLP), a simple and scalable gradient-basedproposal for sampling complex high-dimensional discrete distributions. In contrast to Gibbs sampling-based methods, DLP is able to update all coordinates in parallel in a single step and the magnitude of changes is controlled by a stepsize. This allows a cheap and efficient exploration in the space of high-dimensional and strongly correlated variables. We prove the efficiency of DLP by showing that the asymptotic bias of its stationary distribution is zero for log-quadratic distributions, and is small for distributions that are close to being log-quadratic. With DLP, we develop several variants of sampling algorithms, including unadjusted, Metropolis-adjusted, stochastic and preconditioned versions. DLP outperforms many popular alternatives on a wide variety of tasks, including Ising models, restricted Boltzmann machines, deep energy-based models, binary neural networks and language generation.
Author Information
Ruqi Zhang (UT Austin/Purdue)
Xingchao Liu (University of Texas at Austin)
Qiang Liu (UT Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: A Langevin-like Sampler for Discrete Distributions »
Tue. Jul 19th 08:50 -- 08:55 PM Room Room 307
More from the Same Authors
-
2022 Poster: Centroid Approximation for Bootstrap: Improving Particle Quality at Inference »
Mao Ye · Qiang Liu -
2022 Poster: How to Fill the Optimum Set? Population Gradient Descent with Harmless Diversity »
Chengyue Gong · · Qiang Liu -
2022 Spotlight: How to Fill the Optimum Set? Population Gradient Descent with Harmless Diversity »
Chengyue Gong · · Qiang Liu -
2022 Spotlight: Centroid Approximation for Bootstrap: Improving Particle Quality at Inference »
Mao Ye · Qiang Liu -
2022 Poster: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Spotlight: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2021 Poster: AlphaNet: Improved Training of Supernets with Alpha-Divergence »
Dilin Wang · Chengyue Gong · Meng Li · Qiang Liu · Vikas Chandra -
2021 Oral: AlphaNet: Improved Training of Supernets with Alpha-Divergence »
Dilin Wang · Chengyue Gong · Meng Li · Qiang Liu · Vikas Chandra -
2021 Poster: Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition »
Bo Liu · Qiang Liu · Peter Stone · Animesh Garg · Yuke Zhu · Anima Anandkumar -
2021 Oral: Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition »
Bo Liu · Qiang Liu · Peter Stone · Animesh Garg · Yuke Zhu · Anima Anandkumar -
2020 Poster: Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection »
Mao Ye · Chengyue Gong · Lizhen Nie · Denny Zhou · Adam Klivans · Qiang Liu -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: Accountable Off-Policy Evaluation With Kernel Bellman Statistics »
Yihao Feng · Tongzheng Ren · Ziyang Tang · Qiang Liu -
2020 Poster: A Chance-Constrained Generative Framework for Sequence Optimization »
Xianggen Liu · Qiang Liu · Sen Song · Jian Peng -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 Poster: Improving Neural Language Modeling via Adversarial Training »
Dilin Wang · Chengyue Gong · Qiang Liu -
2019 Oral: Improving Neural Language Modeling via Adversarial Training »
Dilin Wang · Chengyue Gong · Qiang Liu -
2019 Poster: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Poster: Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models »
Dilin Wang · Qiang Liu -
2019 Oral: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Oral: Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models »
Dilin Wang · Qiang Liu -
2018 Poster: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng -
2018 Poster: Stein Variational Gradient Descent Without Gradient »
Jun Han · Qiang Liu -
2018 Oral: Stein Variational Gradient Descent Without Gradient »
Jun Han · Qiang Liu -
2018 Oral: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng -
2018 Poster: Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy »
Jiasen Yang · Qiang Liu · Vinayak A Rao · Jennifer Neville -
2018 Poster: Stein Variational Message Passing for Continuous Graphical Models »
Dilin Wang · Zhe Zeng · Qiang Liu -
2018 Oral: Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy »
Jiasen Yang · Qiang Liu · Vinayak A Rao · Jennifer Neville -
2018 Oral: Stein Variational Message Passing for Continuous Graphical Models »
Dilin Wang · Zhe Zeng · Qiang Liu