Timezone: »
Causal contributions measure the strengths of different causes to a target quantity. Understanding causal contributions is important in empirical sciences and data-driven disciplines since it allows to answer practical queries like ``what are the contributions of each cause to the effect?'' In this paper, we develop a principled method for quantifying causal contributions. First, we provide desiderata of properties axioms that causal contribution measures should satisfy and propose the do-Shapley values (inspired by do-interventions [Pearl, 2000]) as a unique method satisfying these properties. Next, we develop a criterion under which the do-Shapley values can be efficiently inferred from non-experimental data. Finally, we provide do-Shapley estimators exhibiting consistency, computational feasibility, and statistical robustness. Simulation results corroborate with the theory.
Author Information
Yonghan Jung (Purdue University)
Shiva Kasiviswanathan (Amazon Research AI)
Jin Tian (Iowa State University)
Dominik Janzing (Amazon)
Patrick Bloebaum (Amazon AWS)
Elias Bareinboim (Columbia University)

Elias Bareinboim is an associate professor in the Department of Computer Science and the director of the Causal Artificial Intelligence (CausalAI) Laboratory at Columbia University. His research focuses on causal and counterfactual inference and their applications to artificial intelligence and machine learning as well as data-driven fields in the health and social sciences. His work was the first to propose a general solution to the problem of "causal data-fusion," providing practical methods for combining datasets generated under different experimental conditions and plagued with various biases. In the last years, Bareinboim has been exploring the intersection of causal inference with decision-making (including reinforcement learning) and explainability (including fairness analysis). Before joining Columbia, he was an assistant professor at Purdue University and received his Ph.D. in Computer Science from the University of California, Los Angeles. Bareinboim was named one of ``AI's 10 to Watch'' by IEEE, and is a recipient of an NSF CAREER Award, the Dan David Prize Scholarship, the 2014 AAAI Outstanding Paper Award, and the 2019 UAI Best Paper Award.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: On Measuring Causal Contributions via do-interventions »
Tue. Jul 19th through Wed the 20th Room Hall E #503
More from the Same Authors
-
2023 : Transportable Representations for Out-of-distribution Generalization »
Amirkasra Jalaldoust · Elias Bareinboim -
2023 : Interventional and Counterfactual Inference with Diffusion Models »
Patrick Chao · Patrick Bloebaum · Shiva Kasiviswanathan -
2023 : Interventional and Counterfactual Inference with Diffusion Models »
Patrick Chao · Patrick Bloebaum · Shiva Kasiviswanathan -
2023 Poster: Thompson Sampling with Diffusion Generative Prior »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Bloebaum -
2023 Poster: Instrumental Variable Estimation of Average Partial Causal Effects »
Yuta Kawakami · manabu kuroki · Jin Tian -
2023 Poster: Estimating Joint Treatment Effects by Combining Multiple Experiments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2023 Poster: Sequential Kernelized Independence Testing »
Aleksandr Podkopaev · Patrick Bloebaum · Shiva Kasiviswanathan · Aaditya Ramdas -
2022 Poster: Counterfactual Transportability: A Formal Approach »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2022 Spotlight: Counterfactual Transportability: A Formal Approach »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2022 Poster: Partial Counterfactual Identification from Observational and Experimental Data »
Junzhe Zhang · Jin Tian · Elias Bareinboim -
2022 Poster: Causal structure-based root cause analysis of outliers »
Kailash Budhathoki · Lenon Minorics · Patrick Bloebaum · Dominik Janzing -
2022 Poster: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Poster: Neuron Dependency Graphs: A Causal Abstraction of Neural Networks »
Yaojie Hu · Jin Tian -
2022 Spotlight: Causal Inference Through the Structural Causal Marginal Problem »
Luigi Gresele · Julius von Kügelgen · Jonas Kübler · Elke Kirschbaum · Bernhard Schölkopf · Dominik Janzing -
2022 Spotlight: Causal structure-based root cause analysis of outliers »
Kailash Budhathoki · Lenon Minorics · Patrick Bloebaum · Dominik Janzing -
2022 Spotlight: Partial Counterfactual Identification from Observational and Experimental Data »
Junzhe Zhang · Jin Tian · Elias Bareinboim -
2022 Spotlight: Neuron Dependency Graphs: A Causal Abstraction of Neural Networks »
Yaojie Hu · Jin Tian -
2022 : Q & A (second) »
Drago Plecko · Elias Bareinboim -
2022 : Q & A (first) »
Drago Plecko · Elias Bareinboim -
2022 Tutorial: Causal Fairness Analysis »
Elias Bareinboim · Drago Plecko -
2022 : Foundations of Causal Fairness Analysis »
Elias Bareinboim -
2021 Poster: Estimating Identifiable Causal Effects on Markov Equivalence Class through Double Machine Learning »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2021 Spotlight: Estimating Identifiable Causal Effects on Markov Equivalence Class through Double Machine Learning »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Poster: Causal Effect Identifiability under Partial-Observability »
Sanghack Lee · Elias Bareinboim -
2020 Poster: Efficient Identification in Linear Structural Causal Models with Auxiliary Cutsets »
Daniel Kumor · Carlos Cinelli · Elias Bareinboim -
2020 Tutorial: Causal Reinforcement Learning »
Elias Bareinboim -
2019 Poster: Causal Identification under Markov Equivalence: Completeness Results »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2019 Poster: Sensitivity Analysis of Linear Structural Causal Models »
Carlos Cinelli · Daniel Kumor · Bryant Chen · Judea Pearl · Elias Bareinboim -
2019 Poster: Adjustment Criteria for Generalizing Experimental Findings »
Juan Correa · Jin Tian · Elias Bareinboim -
2019 Oral: Sensitivity Analysis of Linear Structural Causal Models »
Carlos Cinelli · Daniel Kumor · Bryant Chen · Judea Pearl · Elias Bareinboim -
2019 Oral: Adjustment Criteria for Generalizing Experimental Findings »
Juan Correa · Jin Tian · Elias Bareinboim -
2019 Oral: Causal Identification under Markov Equivalence: Completeness Results »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2018 Poster: Budgeted Experiment Design for Causal Structure Learning »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Elias Bareinboim -
2018 Oral: Budgeted Experiment Design for Causal Structure Learning »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Elias Bareinboim -
2017 Poster: Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables »
Bryant Chen · Daniel Kumor · Elias Bareinboim -
2017 Poster: Counterfactual Data-Fusion for Online Reinforcement Learners »
Andrew Forney · Judea Pearl · Elias Bareinboim -
2017 Talk: Counterfactual Data-Fusion for Online Reinforcement Learners »
Andrew Forney · Judea Pearl · Elias Bareinboim -
2017 Talk: Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables »
Bryant Chen · Daniel Kumor · Elias Bareinboim