Timezone: »
The trade-off between robustness and accuracy has been widely studied in the adversarial literature. Although still controversial, the prevailing view is that this trade-off is inherent, either empirically or theoretically. Thus, we dig for the origin of this trade-off in adversarial training and find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance --- an overcorrection towards smoothness. Given this, we advocate employing local equivariance to describe the ideal behavior of a robust model, leading to a self-consistent robust error named SCORE. By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty via robust optimization. By simply substituting KL divergence with variants of distance metrics, SCORE can be efficiently minimized. Empirically, our models achieve top-rank performance on RobustBench under AutoAttack. Besides, SCORE provides instructive insights for explaining the overfitting phenomenon and semantic input gradients observed on robust models.
Author Information
Tianyu Pang (Sea AI Lab)

My Google Scholar: https://scholar.google.com/citations?user=wYDbtFsAAAAJ&hl=en
Min Lin (Sea AI Lab)
Xiao Yang (Tsinghua University, Tsinghua University)
Jun Zhu (Tsinghua University)
Shuicheng Yan (Sea AI Labs)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Wed. Jul 20th through Thu the 21st Room Hall E #905
More from the Same Authors
-
2021 : Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk »
Chengyang Ying · Xinning Zhou · Dong Yan · Jun Zhu -
2021 : Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks »
Xiao Yang · Yinpeng Dong · Tianyu Pang -
2021 : Strategically-timed State-Observation Attacks on Deep Reinforcement Learning Agents »
Xinning Zhou · You Qiaoben · Chengyang Ying · Jun Zhu -
2021 : Adversarial Semantic Contour for Object Detection »
Yichi Zhang · Zijian Zhu · Xiao Yang · Jun Zhu -
2021 : Query-based Adversarial Attacks on Graph with Fake Nodes »
Zhengyi Wang · Zhongkai Hao · Jun Zhu -
2022 : $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks »
Tianyu Pang · Shuicheng Yan · Min Lin -
2023 Poster: MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks »
Jiachen Yao · Chang Su · Zhongkai Hao · LIU SONGMING · Hang Su · Jun Zhu -
2023 Poster: Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning »
Cheng Lu · Huayu Chen · Jianfei Chen · Hang Su · Chongxuan Li · Jun Zhu -
2023 Poster: Stabilizing GANs' Training with Brownian Motion Controller »
Tianjiao Luo · Ziyu Zhu · Jianfei Chen · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2023 Poster: NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data »
LIU SONGMING · Zhongkai Hao · Chengyang Ying · Hang Su · Ze Cheng · Jun Zhu -
2023 Poster: Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs »
Kaiwen Zheng · Cheng Lu · Jianfei Chen · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu -
2023 Poster: GNOT: A General Neural Operator Transformer for Operator Learning »
Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu -
2022 Poster: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Spotlight: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Poster: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Poster: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2022 Spotlight: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Variance Reduction and Quasi-Newton for Particle-Based Variational Inference »
Michael Zhu · Chang Liu · Jun Zhu -
2020 Poster: VFlow: More Expressive Generative Flows with Variational Data Augmentation »
Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian -
2020 Poster: Nonparametric Score Estimators »
Yuhao Zhou · Jiaxin Shi · Jun Zhu -
2019 Poster: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2019 Oral: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2018 Poster: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Poster: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Oral: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Oral: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Poster: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2017 Poster: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu -
2017 Talk: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu