Timezone: »
A fundamental concept in control theory is that of controllability, where any system state can bereached through an appropriate choice of control inputs. Indeed, a large body of classical and modernapproaches are designed for controllable linear dynamical systems. However, in practice, we oftenencounter systems in which a large set of state variables evolve exogenously and independently of thecontrol inputs; such systems are only partially controllable. The focus of this work is on a large classof partially controllable linear dynamical systems, specified by an underlying sparsity pattern. Our mainresults establish structural conditions and finite-sample guarantees for learning to control such systems. Inparticular, our structural results characterize those state variables which are irrelevant for optimal control,an analysis which departs from classical control techniques. Our algorithmic results adapt techniquesfrom high-dimensional statistics—specifically soft-thresholding and semiparametric least-squares—toexploit the underlying sparsity pattern in order to obtain finite-sample guarantees that significantly improveover those based on certainty-equivalence. We also corroborate these theoretical improvements overcertainty-equivalent control through a simulation study.
Author Information
Yonathan Efroni (Microsoft Research, New York)
Sham Kakade (Harvard University)
Akshay Krishnamurthy (Microsoft Research)
Cyril Zhang (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Sparsity in Partially Controllable Linear Systems »
Wed. Jul 20th through Thu the 21st Room Hall E #932
More from the Same Authors
-
2021 : Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 : Provable RL with Exogenous Distractors via Multistep Inverse Dynamics »
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 : The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: Provable Copyright Protection for Generative Models »
Nikhil Vyas · Sham Kakade · Boaz Barak -
2023 Poster: Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron »
Jingfeng Wu · Difan Zou · Zixiang Chen · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: Principled Offline RL in the Presence of Rich Exogenous Information »
Riashat Islam · Manan Tomar · Alex Lamb · Yonathan Efroni · Hongyu Zang · Aniket Didolkar · Dipendra Misra · Xin Li · Harm Seijen · Remi Tachet des Combes · John Langford -
2023 Poster: Streaming Active Learning with Deep Neural Networks »
Akanksha Saran · Safoora Yousefi · Akshay Krishnamurthy · John Langford · Jordan Ash -
2023 Poster: Statistical Learning under Heterogenous Distribution Shift »
Max Simchowitz · Anurag Ajay · Pulkit Agrawal · Akshay Krishnamurthy -
2023 Poster: Reward-Mixing MDPs with Few Contexts are Learnable »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2023 Poster: Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games »
Dylan Foster · Noah Golowich · Sham Kakade -
2022 Social: Mental Health in ML Academia »
Paula Gradu · Cyril Zhang -
2022 Poster: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2022 Spotlight: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2022 Poster: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Oral: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Poster: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2022 Poster: Inductive Biases and Variable Creation in Self-Attention Mechanisms »
Benjamin Edelman · Surbhi Goel · Sham Kakade · Cyril Zhang -
2022 Spotlight: Inductive Biases and Variable Creation in Self-Attention Mechanisms »
Benjamin Edelman · Surbhi Goel · Sham Kakade · Cyril Zhang -
2022 Spotlight: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Spotlight: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2021 Poster: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Spotlight: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Poster: Acceleration via Fractal Learning Rate Schedules »
Naman Agarwal · Surbhi Goel · Cyril Zhang -
2021 Spotlight: Acceleration via Fractal Learning Rate Schedules »
Naman Agarwal · Surbhi Goel · Cyril Zhang -
2020 : Representation learning and exploration in reinforcement learning - Akshay Krishnamurthy »
Akshay Krishnamurthy -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 Poster: Optimistic Policy Optimization with Bandit Feedback »
Lior Shani · Yonathan Efroni · Aviv Rosenberg · Shie Mannor -
2020 Poster: Doubly robust off-policy evaluation with shrinkage »
Yi Su · Maria Dimakopoulou · Akshay Krishnamurthy · Miroslav Dudik -
2020 Poster: Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning »
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford -
2020 Poster: Reward-Free Exploration for Reinforcement Learning »
Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu -
2020 Poster: Adaptive Estimator Selection for Off-Policy Evaluation »
Yi Su · Pavithra Srinath · Akshay Krishnamurthy -
2020 Poster: Multi-step Greedy Reinforcement Learning Algorithms »
Manan Tomar · Yonathan Efroni · Mohammad Ghavamzadeh -
2020 Poster: Private Reinforcement Learning with PAC and Regret Guarantees »
Giuseppe Vietri · Borja de Balle Pigem · Akshay Krishnamurthy · Steven Wu -
2019 Poster: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Poster: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Shie Mannor -
2019 Poster: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Oral: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Oral: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Yonathan Efroni · Shie Mannor · Shie Mannor -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Poster: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Oral: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Talk: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford