Timezone: »

Scaling Out-of-Distribution Detection for Real-World Settings
Dan Hendrycks · Steven Basart · Mantas Mazeika · Andy Zou · joseph kwon · Mohammadreza Mostajabi · Jacob Steinhardt · Dawn Song

Wed Jul 20 02:45 PM -- 02:50 PM (PDT) @ Ballroom 1 & 2

Detecting out-of-distribution examples is important for safety-critical machine learning applications such as detecting novel biological phenomena and self-driving cars. However, existing research mainly focuses on simple small-scale settings. To set the stage for more realistic out-of-distribution detection, we depart from small-scale settings and explore large-scale multiclass and multi-label settings with high-resolution images and thousands of classes. To make future work in real-world settings possible, we create new benchmarks for three large-scale settings. To test ImageNet multiclass anomaly detectors, we introduce the Species dataset containing over 700,000 images and over a thousand anomalous species. We leverage ImageNet-21K to evaluate PASCAL VOC and COCO multilabel anomaly detectors. Third, we introduce a new benchmark for anomaly segmentation by introducing a segmentation benchmark with road anomalies. We conduct extensive experiments in these more realistic settings for out-of-distribution detection and find that a surprisingly simple detector based on the maximum logit outperforms prior methods in all the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new baseline for future work.

Author Information

Dan Hendrycks (UC Berkeley)
Steven Basart (University of Chicago)
Mantas Mazeika (UIUC)
Andy Zou (UC Berkeley)
joseph kwon (Yale University)
Mohammadreza Mostajabi (Zendar)
Jacob Steinhardt (UC Berkeley)
Dawn Song (UC Berkeley)

Dawn Song is a Professor in the Department of Electrical Engineering and Computer Science at UC Berkeley. Her research interest lies in deep learning, security, and blockchain. She has studied diverse security and privacy issues in computer systems and networks, including areas ranging from software security, networking security, distributed systems security, applied cryptography, blockchain and smart contracts, to the intersection of machine learning and security. She is the recipient of various awards including the MacArthur Fellowship, the Guggenheim Fellowship, the NSF CAREER Award, the Alfred P. Sloan Research Fellowship, the MIT Technology Review TR-35 Award, the George Tallman Ladd Research Award, the Okawa Foundation Research Award, the Li Ka Shing Foundation Women in Science Distinguished Lecture Series Award, the Faculty Research Award from IBM, Google and other major tech companies, and Best Paper Awards from top conferences in Computer Security and Deep Learning. She obtained her Ph.D. degree from UC Berkeley. Prior to joining UC Berkeley as a faculty, she was a faculty at Carnegie Mellon University from 2002 to 2007.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors