Timezone: »
Poster
RUMs from Head-to-Head Contests
Matteo Almanza · Flavio Chierichetti · Ravi Kumar · Alessandro Panconesi · Andrew Tomkins
Random utility models (RUMs) encode the likelihood that a particular item will be selected from a slate of competing items. RUMs are well-studied objects in both discrete choice theory and, more recently, in the machine learning community, as they encode a fairly broad notion of rational user behavior. In this paper, we focus on slates of size two representing head-to-head contests. Given a tournament matrix $M$ such that $M_{i,j}$ is the probability that item $j$ will be selected from $\{i, j\}$, we consider the problem of finding the RUM that most closely reproduces $M$. For this problem we obtain a polynomial-time algorithm returning a RUM that approximately minimizes the average error over the pairs.Our experiments show that RUMs can {\em perfectly} represent many of the tournament matrices that have been considered in the literature; in fact, the maximum average error induced by RUMs on the matrices we considered is negligible ($\approx 0.001$). We also show that RUMs are competitive, on prediction tasks, with previous approaches.
Author Information
Matteo Almanza (Sapienza University)
Flavio Chierichetti (Sapienza University)
Ravi Kumar (Google)
Alessandro Panconesi (Sapienza, University of Rome)
Andrew Tomkins (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: RUMs from Head-to-Head Contests »
Thu. Jul 21st 02:50 -- 02:55 PM Room Room 310
More from the Same Authors
-
2021 : Randomized Response with Prior and Applications to Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 : User-Level Private Learning via Correlated Sampling »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2022 Poster: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Spotlight: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Poster: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Spotlight: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Spotlight: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Poster: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Oral: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Light RUMs »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2021 Spotlight: Light RUMs »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2020 Poster: Online Learning with Imperfect Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2020 Poster: Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh -
2019 Poster: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Oral: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2018 Poster: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2018 Oral: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2017 Poster: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff -
2017 Talk: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff