Timezone: »
The von Neumann-Morgenstern (VNM) utility theorem shows that under certain axioms of rationality, decision-making is reduced to maximizing the expectation of some utility function. We extend these axioms to increasingly structured sequential decision making settings and identify the structure of the corresponding utility functions. In particular, we show that memoryless preferences lead to a utility in the form of a per transition reward and multiplicative factor on the future return. This result motivates a generalization of Markov Decision Processes (MDPs) with this structure on the agent's returns, which we call Affine-Reward MDPs. A stronger constraint on preferences is needed to recover the commonly used cumulative sum of scalar rewards in MDPs. A yet stronger constraint simplifies the utility function for goal-seeking agents in the form of a difference in some function of states that we call potential functions. Our necessary and sufficient conditions demystify the reward hypothesis that underlies the design of rational agents in reinforcement learning by adding an axiom to the VNM rationality axioms and motivates new directions for AI research involving sequential decision making.
Author Information
Mehran Shakerinava (McGill - Mila)
Siamak Ravanbakhsh (McGill - Mila)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Utility Theory for Sequential Decision Making »
Thu. Jul 21st 08:40 -- 08:45 PM Room Room 327 - 329
More from the Same Authors
-
2022 : Galaxies on graph neural networks: towards robust synthetic galaxy catalogs with deep generative models »
Yesukhei Jagvaral · Rachel Mandelbaum · Francois Lanusse · Siamak Ravanbakhsh · Sukhdeep Singh · Duncan Campbell -
2022 Poster: EqR: Equivariant Representations for Data-Efficient Reinforcement Learning »
Arnab Kumar Mondal · Vineet Jain · Kaleem Siddiqi · Siamak Ravanbakhsh -
2022 Spotlight: EqR: Equivariant Representations for Data-Efficient Reinforcement Learning »
Arnab Kumar Mondal · Vineet Jain · Kaleem Siddiqi · Siamak Ravanbakhsh -
2021 Poster: Equivariant Networks for Pixelized Spheres »
Mehran Shakerinava · Siamak Ravanbakhsh -
2021 Spotlight: Equivariant Networks for Pixelized Spheres »
Mehran Shakerinava · Siamak Ravanbakhsh -
2020 Poster: Universal Equivariant Multilayer Perceptrons »
Siamak Ravanbakhsh -
2017 Poster: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos -
2017 Talk: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos