Timezone: »
Model selection in contextual bandits is an important complementary problem to regret minimization with respect to a fixed model class. We consider the simplest non-trivial instance of model-selection: distinguishing a simple multi-armed bandit problem from a linear contextual bandit problem. Even in this instance, current state-of-the-art methods explore in a suboptimal manner and require strong "feature-diversity" conditions. In this paper, we introduce new algorithms that a) explore in a data-adaptive manner, and b) provide model selection guarantees of the form O(d^{\alpha} T^{1 - \alpha}) with no feature diversity conditions whatsoever, where d denotes the dimension of the linear model and T denotes the total number of rounds. The first algorithm enjoys a "best-of-both-worlds" property, recovering two prior results that hold under distinct distributional assumptions, simultaneously. The second removes distributional assumptions altogether, expanding the scope for tractable model selection. Our approach extends to model selection among nested linear contextual bandits under some additional assumptions.
Author Information
Vidya Muthukumar (Georgia Institute of Technology)
Akshay Krishnamurthy (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Thu. Jul 21st 07:55 -- 08:00 PM Room Ballroom 3 & 4
More from the Same Authors
-
2021 : Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation »
Ke Wang · Vidya Muthukumar · Christos Thrampoulidis -
2021 : Classification and Adversarial Examples in an Overparameterized Linear Model: A Signal-Processing Perspective »
Adhyyan Narang · Vidya Muthukumar · Anant Sahai -
2021 : Provable RL with Exogenous Distractors via Multistep Inverse Dynamics »
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2021 : Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity »
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2023 : Saving a Split for Last-layer Retraining can Improve Group Robustness without Group Annotations »
Tyler LaBonte · Vidya Muthukumar · Abhishek Kumar -
2023 : Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 : Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 Poster: Streaming Active Learning with Deep Neural Networks »
Akanksha Saran · Safoora Yousefi · Akshay Krishnamurthy · John Langford · Jordan Ash -
2023 Poster: Statistical Learning under Heterogenous Distribution Shift »
Max Simchowitz · Anurag Ajay · Pulkit Agrawal · Akshay Krishnamurthy -
2022 Poster: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Spotlight: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Poster: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2022 Spotlight: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2020 : Representation learning and exploration in reinforcement learning - Akshay Krishnamurthy »
Akshay Krishnamurthy -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 Poster: Doubly robust off-policy evaluation with shrinkage »
Yi Su · Maria Dimakopoulou · Akshay Krishnamurthy · Miroslav Dudik -
2020 Poster: Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning »
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford -
2020 Poster: Reward-Free Exploration for Reinforcement Learning »
Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu -
2020 Poster: Adaptive Estimator Selection for Off-Policy Evaluation »
Yi Su · Pavithra Srinath · Akshay Krishnamurthy -
2020 Poster: Private Reinforcement Learning with PAC and Regret Guarantees »
Giuseppe Vietri · Borja de Balle Pigem · Akshay Krishnamurthy · Steven Wu -
2019 Poster: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Oral: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Talk: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford