Timezone: »
Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graph-structured data. To address its scalability issue due to the recursive embedding of neighboring features, graph topology sampling has been proposed to reduce the memory and computational cost of training GCNs, and it has achieved comparable test performance to those without topology sampling in many empirical studies. To the best of our knowledge, this paper provides the first theoretical justification of graph topology sampling in training (up to) three-layer GCNs for semi-supervised node classification. We formally characterize some sufficient conditions on graph topology sampling such that GCN training leads to diminishing generalization error. Moreover, our method tackles the non-convex interaction of weights across layers, which is under-explored in the existing theoretical analyses of GCNs. This paper characterizes the impact of graph structures and topology sampling on the generalization performance and sample complexity explicitly, and the theoretical findings are also justified through numerical experiments.
Author Information
Hongkang Li (Rensselaer Polytechnic Institute)
Meng Wang (Rensselaer Polytechnic Institute)
Sijia Liu (Michigan State University)
Pin-Yu Chen (IBM Research AI)
Jinjun Xiong (University at Buffalo)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Wed. Jul 20th through Thu the 21st Room Hall E #421
More from the Same Authors
-
2022 : Saliency Guided Adversarial Training for Tackling Generalization Gap with Applications to Medical Imaging Classification System »
Xin Li · Yao Qiang · CHNEGYIN LI · Sijia Liu · Dongxiao Zhu -
2023 Poster: Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach »
Prashant Khanduri · Ioannis Tsaknakis · Yihua Zhang · Jia Liu · Sijia Liu · Jiawei Zhang · Mingyi Hong -
2023 Poster: Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks »
Mohammed Nowaz Rabbani Chowdhury · Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen -
2023 Oral: Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks »
Mohammed Nowaz Rabbani Chowdhury · Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Poster: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Poster: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Spotlight: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Spotlight: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Spotlight: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization »
Yihua Zhang · Guanhua Zhang · Prashant Khanduri · Mingyi Hong · Shiyu Chang · Sijia Liu -
2022 Spotlight: Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization »
Yihua Zhang · Guanhua Zhang · Prashant Khanduri · Mingyi Hong · Shiyu Chang · Sijia Liu -
2022 Poster: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2022 Spotlight: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Spotlight: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Poster: Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not? »
Ning Liu · Geng Yuan · Zhengping Che · Xuan Shen · Xiaolong Ma · Qing Jin · Jian Ren · Jian Tang · Sijia Liu · Yanzhi Wang -
2021 Spotlight: Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not? »
Ning Liu · Geng Yuan · Zhengping Che · Xuan Shen · Xiaolong Ma · Qing Jin · Jian Ren · Jian Tang · Sijia Liu · Yanzhi Wang -
2021 Poster: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2021 Spotlight: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2020 Poster: Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing »
Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney -
2020 Poster: Proper Network Interpretability Helps Adversarial Robustness in Classification »
Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel -
2020 Poster: Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources »
Yun Yun Tsai · Pin-Yu Chen · Tsung-Yi Ho -
2020 Poster: Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case »
shuai zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2019 Poster: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Poster: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel -
2019 Oral: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Oral: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel