Timezone: »
Coarse-graining (CG) of molecular simulations simplifies the particle representation by grouping selected atoms into pseudo-beads and therefore drastically accelerates simulation. However, such CG procedure induces information losses, which makes accurate backmapping, i.e., restoring fine-grained (FG) coordinates from CG coordinates, a long-standing challenge. Inspired by the recent progress in generative models and equivariant networks, we propose a novel model that rigorously embeds the vital probabilistic nature and geometrical consistency requirements of the backmapping transformation. Our model encodes the FG uncertainties into an invariant latent space and decodes them back to FG geometries via equivariant convolutions. To standardize the evaluation of this domain, we further provide three comprehensive benchmarks based on molecular dynamics trajectories. Extensive experiments show that our approach always recovers more realistic structures and outperforms existing data-driven methods with a significant margin.
Author Information
Wujie Wang (Massachusetts Institute of Technology)
Minkai Xu (University of Montreal)
Chen Cai (University of California, San Diego)
Benjamin Kurt Miller (University of Amsterdam)
Tess Smidt (Massachusetts Institute of Technology)
Yusu Wang (UC San Diego)
Jian Tang (Mila)
Rafael Gomez-Bombarelli (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Generative Coarse-Graining of Molecular Conformations »
Wed. Jul 20th through Thu the 21st Room Hall E #125
More from the Same Authors
-
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Shengchao Liu · Jean Kaddour · Qi Liu · Jian Tang · Matt Kusner · Joan Lasenby -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Bojana Ranković · Philippe Schwaller · Gregory Kell · Anthony Bourached · Alexander Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Jian Tang -
2022 : Flaky Performances when Pre-Training on Relational Databases with a Plan for Future Characterization Efforts »
Shengchao Liu · David Vazquez · Jian Tang · Pierre-André Noël -
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Hanchen Wang · Shengchao Liu · Shengchao Liu · Jean Kaddour · Jean Kaddour · Qi Liu · Qi Liu · Jian Tang · Jian Tang · Matt Kusner · Matt Kusner · Joan Lasenby · Joan Lasenby -
2023 Poster: Chemically Transferable Generative Backmapping of Coarse-Grained Proteins »
Soojung Yang · Rafael Gomez-Bombarelli -
2023 Poster: Understanding Oversquashing in GNNs through the Lens of Effective Resistance »
Mitchell Black · Amir Nayyeri · Zhengchao Wan · Yusu Wang -
2023 Poster: The Numerical Stability of Hyperbolic Representation Learning »
Gal Mishne · Zhengchao Wan · Yusu Wang · Sheng Yang -
2023 Poster: Differentiable Simulations for Enhanced Sampling of Rare Events »
Martin Šípka · Johannes Dietschreit · Lukáš Grajciar · Rafael Gomez-Bombarelli -
2023 Poster: A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining »
Shengchao Liu · weitao du · Zhiming Ma · Hongyu Guo · Jian Tang -
2023 Poster: FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning »
Songtao Liu · Zhengkai Tu · Minkai Xu · Zuobai Zhang · Lu Lin · Rex Ying · Jian Tang · Peilin Zhao · Dinghao Wu -
2023 Poster: On the Connection Between MPNN and Graph Transformer »
Chen Cai · Truong Son Hy · Rose Yu · Yusu Wang -
2023 Poster: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2023 Oral: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Sign and Basis Invariant Networks for Spectral Graph Representation Learning »
Derek Lim · Joshua Robinson · Lingxiao Zhao · Tess Smidt · Suvrit Sra · Haggai Maron · Stefanie Jegelka -
2022 Workshop: Workshop on Machine Learning in Computational Design »
Andrew Spielberg · Caitlin Mueller · Lydia Chilton · Rafael Gomez-Bombarelli · Vladimir Kim · Daniel Ritchie · Wengong Jin -
2022 Poster: Convergence of Invariant Graph Networks »
Chen Cai · Yusu Wang -
2022 Spotlight: Convergence of Invariant Graph Networks »
Chen Cai · Yusu Wang -
2022 Poster: Weisfeiler-Lehman Meets Gromov-Wasserstein »
Samantha Chen · Sunhyuk Lim · Facundo Memoli · Zhengchao Wan · Yusu Wang -
2022 Spotlight: Weisfeiler-Lehman Meets Gromov-Wasserstein »
Samantha Chen · Sunhyuk Lim · Facundo Memoli · Zhengchao Wan · Yusu Wang -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang