Timezone: »

 
Poster
The State of Sparse Training in Deep Reinforcement Learning
Laura Graesser · Utku Evci · Erich Elsen · Pablo Samuel Castro

Wed Jul 20 03:30 PM -- 05:30 PM (PDT) @ Hall E #522

The use of sparse neural networks has seen rapid growth in recent years, particularly in computer vision. Their appeal stems largely from the reduced number of parameters required to train and store, as well as in an increase in learning efficiency. Somewhat surprisingly, there have been very few efforts exploring their use in Deep Reinforcement Learning (DRL). In this work we perform a systematic investigation into applying a number of existing sparse training techniques on a variety of DRL agents and environments. Our results corroborate the findings from sparse training in the computer vision domain –sparse networks perform better than dense networks for the same parameter count– in the DRL domain. We provide detailed analyses on how the various components in DRL are affected by the use of sparse networks and conclude by suggesting promising avenues for improving the effectiveness of sparse training methods, as well as for advancing their use in DRL.

Author Information

Laura Graesser (Google)
Utku Evci (Google)
Erich Elsen (Google)
Pablo Samuel Castro (Google Brain)

Pablo was born and raised in Quito, Ecuador, and moved to Montreal after high school to study at McGill. He stayed in Montreal for the next 10 years, finished his bachelors, worked at a flight simulator company, and then eventually obtained his masters and PhD at McGill, focusing on Reinforcement Learning. After his PhD Pablo did a 10-month postdoc in Paris before moving to Pittsburgh to join Google. He has worked at Google for almost 6 years, and is currently a research Software Engineer in Google Brain in Montreal, focusing on fundamental Reinforcement Learning research, as well as Machine Learning and Music. Aside from his interest in coding/AI/math, Pablo is an active musician (https://www.psctrio.com), loves running (5 marathons so far, including Boston!), and discussing politics and activism.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2021 : A functional mirror ascent view of policy gradient methods with function approximation »
    Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux
  • 2022 : Estimating Policy Functions in Payments Systems Using Reinforcement Learning »
    Pablo Samuel Castro
  • 2022 Poster: Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning »
    Utku Evci · Vincent Dumoulin · Hugo Larochelle · Michael Mozer
  • 2022 Poster: Improving Language Models by Retrieving from Trillions of Tokens »
    Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre
  • 2022 Poster: Unified Scaling Laws for Routed Language Models »
    Aidan Clark · Diego de Las Casas · Aurelia Guy · Arthur Mensch · Michela Paganini · Jordan Hoffmann · Bogdan Damoc · Blake Hechtman · Trevor Cai · Sebastian Borgeaud · George van den Driessche · Eliza Rutherford · Tom Hennigan · Matthew Johnson · Albin Cassirer · Chris Jones · Elena Buchatskaya · David Budden · Laurent Sifre · Simon Osindero · Oriol Vinyals · Marc'Aurelio Ranzato · Jack Rae · Erich Elsen · Koray Kavukcuoglu · Karen Simonyan
  • 2022 Spotlight: Improving Language Models by Retrieving from Trillions of Tokens »
    Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre
  • 2022 Oral: Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning »
    Utku Evci · Vincent Dumoulin · Hugo Larochelle · Michael Mozer
  • 2022 Oral: Unified Scaling Laws for Routed Language Models »
    Aidan Clark · Diego de Las Casas · Aurelia Guy · Arthur Mensch · Michela Paganini · Jordan Hoffmann · Bogdan Damoc · Blake Hechtman · Trevor Cai · Sebastian Borgeaud · George van den Driessche · Eliza Rutherford · Tom Hennigan · Matthew Johnson · Albin Cassirer · Chris Jones · Elena Buchatskaya · David Budden · Laurent Sifre · Simon Osindero · Oriol Vinyals · Marc'Aurelio Ranzato · Jack Rae · Erich Elsen · Koray Kavukcuoglu · Karen Simonyan
  • 2021 Poster: Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
    Johan Obando Ceron · Pablo Samuel Castro
  • 2021 Spotlight: Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
    Johan Obando Ceron · Pablo Samuel Castro
  • 2020 Poster: Rigging the Lottery: Making All Tickets Winners »
    Utku Evci · Trevor Gale · Jacob Menick · Pablo Samuel Castro · Erich Elsen
  • 2020 Poster: On the Generalization Benefit of Noise in Stochastic Gradient Descent »
    Samuel Smith · Erich Elsen · Soham De
  • 2019 : Poster discussion »
    Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari
  • 2018 Poster: Efficient Neural Audio Synthesis »
    Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · Koray Kavukcuoglu
  • 2018 Oral: Efficient Neural Audio Synthesis »
    Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · Koray Kavukcuoglu