Timezone: »
Poster
Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm
Lechao Xiao · Jeffrey Pennington
Although learning in high dimensions is commonly believed to suffer from the curse of dimensionality, modern machine learning methods often exhibit an astonishing power to tackle a wide range of challenging real-world learning problems without using abundant amounts of data. How exactly these methods break this curse remains a fundamental open question in the theory of deep learning. While previous efforts have investigated this question by studying the data ($\mathcal D$), model ($\mathcal M$), and inference algorithm ($\mathcal I$) as independent modules, in this paper we analyzes the triplet $(\mathcal D, \mathcal M, \mathcal I)$ as an integrated system and identify important synergies that help mitigate the curse of dimensionality. We first study the basic symmetries associated with various learning algorithms ($\mathcal M, \mathcal I$), focusing on four prototypical architectures in deep learning: fully-connected networks, locally-connected networks, and convolutional networks with and without pooling. We find that learning is most efficient when these symmetries are compatible with those of the data distribution and that performance significantly deteriorates when any member of the \dmi triplet is inconsistent or suboptimal.
Author Information
Lechao Xiao (Google Research)
Jeffrey Pennington (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm »
Wed. Jul 20th 08:35 -- 08:40 PM Room Room 327 - 329
More from the Same Authors
-
2023 Poster: Second-order regression models exhibit progressive sharpening to the edge of stability »
Atish Agarwala · Fabian Pedregosa · Jeffrey Pennington -
2022 Poster: Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling »
Jiri Hron · Roman Novak · Jeffrey Pennington · Jascha Sohl-Dickstein -
2022 Spotlight: Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling »
Jiri Hron · Roman Novak · Jeffrey Pennington · Jascha Sohl-Dickstein -
2021 : The Mystery of Generalization: Why Does Deep Learning Work? »
Jeffrey Pennington -
2021 Tutorial: Random Matrix Theory and ML (RMT+ML) »
Fabian Pedregosa · Courtney Paquette · Thomas Trogdon · Jeffrey Pennington -
2020 Poster: The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization »
Ben Adlam · Jeffrey Pennington -
2020 Poster: Disentangling Trainability and Generalization in Deep Neural Networks »
Lechao Xiao · Jeffrey Pennington · Samuel Schoenholz -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Workshop: Theoretical Physics for Deep Learning »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 : Opening Remarks »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2018 Poster: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Oral: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Poster: Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks »
Lechao Xiao · Yasaman Bahri · Jascha Sohl-Dickstein · Samuel Schoenholz · Jeffrey Pennington -
2018 Oral: Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks »
Lechao Xiao · Yasaman Bahri · Jascha Sohl-Dickstein · Samuel Schoenholz · Jeffrey Pennington -
2017 Poster: Geometry of Neural Network Loss Surfaces via Random Matrix Theory »
Jeffrey Pennington · Yasaman Bahri -
2017 Talk: Geometry of Neural Network Loss Surfaces via Random Matrix Theory »
Jeffrey Pennington · Yasaman Bahri