Timezone: »
Spotlight
Reverse Engineering $\ell_p$ attacks: A block-sparse optimization approach with recovery guarantees
Darshan Thaker · Paris Giampouras · Rene Vidal
Deep neural network-based classifiers have been shown to be vulnerable to imperceptible perturbations to their input, such as $\ell_p$-bounded norm adversarial attacks. This has motivated the development of many defense methods, which are then broken by new attacks, and so on. This paper focuses on a different but related problem of reverse engineering adversarial attacks. Specifically, given an attacked signal, we study conditions under which one can determine the type of attack ($\ell_1$, $\ell_2$ or $\ell_\infty$) and recover the clean signal. We pose this problem as a block-sparse recovery problem, where both the signal and the attack are assumed to lie in a union of subspaces that includes one subspace per class and one subspace per attack type. We derive geometric conditions on the subspaces under which any attacked signal can be decomposed as the sum of a clean signal plus an attack. In addition, by determining the subspaces that contain the signal and the attack, we can also classify the signal and determine the attack type. Experiments on digit and face classification demonstrate the effectiveness of the proposed approach.
Author Information
Darshan Thaker (Johns Hopkins University)
Paris Giampouras (Mathematical Institute for Data Science, Johns Hopkins University)
Rene Vidal (Johns Hopkins University, USA)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Reverse Engineering $\ell_p$ attacks: A block-sparse optimization approach with recovery guarantees »
Tue. Jul 19th through Wed the 20th Room Hall E #302
More from the Same Authors
-
2023 Workshop: HiLD: High-dimensional Learning Dynamics Workshop »
Courtney Paquette · Zhenyu Liao · Mihai Nica · Elliot Paquette · Andrew Saxe · Rene Vidal -
2023 Poster: On the Convergence of Gradient Flow on Multi-layer Linear Models »
Hancheng Min · Rene Vidal · Enrique Mallada -
2023 Poster: Learning Globally Smooth Functions on Manifolds »
Juan Cervino · Luiz Chamon · Benjamin Haeffele · Rene Vidal · Alejandro Ribeiro -
2023 Poster: The Ideal Continual Learner: An Agent That Never Forgets »
Liangzu Peng · Paris Giampouras · Rene Vidal -
2022 Poster: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2022 Spotlight: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2021 Poster: Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach »
Tianyu Ding · Zhihui Zhu · Rene Vidal · Daniel Robinson -
2021 Spotlight: Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach »
Tianyu Ding · Zhihui Zhu · Rene Vidal · Daniel Robinson -
2021 Poster: Understanding the Dynamics of Gradient Flow in Overparameterized Linear models »
Salma Tarmoun · Guilherme Franca · Benjamin Haeffele · Rene Vidal -
2021 Poster: On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks »
Hancheng Min · Salma Tarmoun · Rene Vidal · Enrique Mallada -
2021 Spotlight: On the Explicit Role of Initialization on the Convergence and Implicit Bias of Overparametrized Linear Networks »
Hancheng Min · Salma Tarmoun · Rene Vidal · Enrique Mallada -
2021 Spotlight: Understanding the Dynamics of Gradient Flow in Overparameterized Linear models »
Salma Tarmoun · Guilherme Franca · Benjamin Haeffele · Rene Vidal -
2021 Poster: A Nullspace Property for Subspace-Preserving Recovery »
Mustafa D Kaba · Chong You · Daniel Robinson · Enrique Mallada · Rene Vidal -
2021 Spotlight: A Nullspace Property for Subspace-Preserving Recovery »
Mustafa D Kaba · Chong You · Daniel Robinson · Enrique Mallada · Rene Vidal -
2019 Poster: Noisy Dual Principal Component Pursuit »
Tianyu Ding · Zhihui Zhu · Tianjiao Ding · Yunchen Yang · Daniel Robinson · Manolis Tsakiris · Rene Vidal -
2019 Oral: Noisy Dual Principal Component Pursuit »
Tianyu Ding · Zhihui Zhu · Tianjiao Ding · Yunchen Yang · Daniel Robinson · Manolis Tsakiris · Rene Vidal