Timezone: »
Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential sample complexity dependence on the number of agents, a phenomenon known as \emph{the curse of multiagents}. We address this challenge by investigating sample-efficient model-free algorithms in \emph{decentralized} MARL, and aim to improve existing algorithms along this line. For learning (coarse) correlated equilibria in general-sum Markov games, we propose \emph{stage-based} V-learning algorithms that significantly simplify the algorithmic design and analysis of recent works, and circumvent a rather complicated no-\emph{weighted}-regret bandit subroutine. For learning Nash equilibria in Markov potential games, we propose an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique. All our algorithms are decentralized in that each agent can make decisions based on only its local information. Neither communication nor centralized coordination is required during learning, leading to a natural generalization to a large number of agents. Finally, we provide numerical simulations to corroborate our theoretical findings.
Author Information
Weichao Mao (University of Illinois Urbana-Champaign)
Lin Yang (UCLA)
Kaiqing Zhang (MIT)
Tamer Basar (University of Illinois at Urbana-Champaign)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning »
Thu. Jul 21st through Fri the 22nd Room Hall E #1422
More from the Same Authors
-
2021 : Derivative-Free Policy Optimization for Linear Risk-Sensitive and Robust Control Design: Implicit Regularization and Sample Complexity »
Kaiqing Zhang · Xiangyuan Zhang · Bin Hu · Tamer Basar -
2021 : Gap-Dependent Unsupervised Exploration for Reinforcement Learning »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2021 : Decentralized Q-Learning in Zero-sum Markov Games »
Kaiqing Zhang · David Leslie · Tamer Basar · Asuman Ozdaglar -
2021 : Online Sub-Sampling for Reinforcement Learning with General Function Approximation »
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2022 : Provably Correct SGD-based Exploration for Linear Bandit »
Jialin Dong · Lin Yang -
2022 : Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning »
Dingwen Kong · Lin Yang -
2023 Poster: Does Sparsity Help in Learning Misspecified Linear Bandits? »
Jialin Dong · Lin Yang -
2023 Poster: Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost »
Sanae Amani · Tor Lattimore · Andras Gyorgy · Lin Yang -
2023 Poster: Horizon-free Learning for Markov Decision Processes and Games: Stochastically Bounded Rewards and Improved Bounds »
Shengshi Li · Lin Yang -
2023 Poster: Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling »
Yunfan Li · Yiran Wang · Yu Cheng · Lin Yang -
2022 : What is a Good Metric to Study Generalization of Minimax Learners? »
Asuman Ozdaglar · Sarath Pattathil · Jiawei Zhang · Kaiqing Zhang -
2022 Poster: Do Differentiable Simulators Give Better Policy Gradients? »
Hyung Ju Suh · Max Simchowitz · Kaiqing Zhang · Russ Tedrake -
2022 Oral: Do Differentiable Simulators Give Better Policy Gradients? »
Hyung Ju Suh · Max Simchowitz · Kaiqing Zhang · Russ Tedrake -
2022 Poster: Independent Policy Gradient for Large-Scale Markov Potential Games: Sharper Rates, Function Approximation, and Game-Agnostic Convergence »
Dongsheng Ding · Chen-Yu Wei · Kaiqing Zhang · Mihailo Jovanovic -
2022 Oral: Independent Policy Gradient for Large-Scale Markov Potential Games: Sharper Rates, Function Approximation, and Game-Agnostic Convergence »
Dongsheng Ding · Chen-Yu Wei · Kaiqing Zhang · Mihailo Jovanovic -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 Poster: Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs »
Weichao Mao · Kaiqing Zhang · Ruihao Zhu · David Simchi-Levi · Tamer Basar -
2021 Poster: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Poster: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Spotlight: Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs »
Weichao Mao · Kaiqing Zhang · Ruihao Zhu · David Simchi-Levi · Tamer Basar -
2021 Spotlight: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Poster: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang -
2021 Spotlight: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang -
2021 Poster: Reinforcement Learning for Cost-Aware Markov Decision Processes »
Wesley A Suttle · Kaiqing Zhang · Zhuoran Yang · Ji Liu · David N Kraemer -
2021 Spotlight: Reinforcement Learning for Cost-Aware Markov Decision Processes »
Wesley A Suttle · Kaiqing Zhang · Zhuoran Yang · Ji Liu · David N Kraemer -
2020 Poster: Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound »
Lin Yang · Mengdi Wang -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Nearly Linear Row Sampling Algorithm for Quantile Regression »
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang -
2020 Poster: Obtaining Adjustable Regularization for Free via Iterate Averaging »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2018 Poster: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar -
2018 Oral: Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents »
Kaiqing Zhang · Zhuoran Yang · Han Liu · Tong Zhang · Tamer Basar