Timezone: »
Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of the communication cost, and it can also compromise the privacy of each agent's local behavior policy. In this paper, we consider a federated reinforcement learning framework where multiple agents collaboratively learn a global model, without sharing their individual data and policies. Each agent maintains a local copy of the model and updates it using locally sampled data. Although having N agents enables the sampling of N times more data, it is not clear if it leads to proportional convergence speedup. We propose federated versions of on-policy TD, off-policy TD and Q-learning, and analyze their convergence. For all these algorithms, to the best of our knowledge, we are the first to consider Markovian noise and multiple local updates, and prove a linear convergence speedup with respect to the number of agents. To obtain these results, we show that federated TD and Q-learning are special cases of a general framework for federated stochastic approximation with Markovian noise, and we leverage this framework to provide a unified convergence analysis that applies to all the algorithms.
Author Information
sajad khodadadian (georgia institute of technology)
PRANAY SHARMA (CARNEGIE MELLON UNIVERSITY)
I am a postdoctoral researcher in the Dept. of Electrical and Computer Engineering, at Carnegie Mellon University. I'm working with Prof. Gauri Joshi. In August 2021, I finished my Ph.D. in Electrical Engineering and Computer Science at Syracuse University. My advisor was Prof. Pramod K. Varshney. I finished my B.Tech-M.Tech dual-degree in Electrical Engineering from IIT Kanpur.
Gauri Joshi (Carnegie Mellon University)
Siva Maguluri (Georgia Tech)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Oral: Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling »
Thu. Jul 21st 02:30 -- 02:50 PM Room Room 307
More from the Same Authors
-
2021 : Finite Sample Analysis of Average-Reward TD Learning and $Q$-Learning »
Sheng Zhang · Zhe Zhang · Siva Maguluri -
2021 : Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators »
Zaiwei Chen · Siva Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2021 : Finite-Sample Analysis of Off-Policy Natural Actor-Critic With Linear Function Approximation »
Zaiwei Chen · sajad khodadadian · Siva Maguluri -
2023 : Towards a Theoretical and Practical Understanding of One-Shot Federated Learning with Fisher Information »
Divyansh Jhunjhunwala · Shiqiang Wang · Gauri Joshi -
2023 Poster: The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond »
Jiin Woo · Gauri Joshi · Yuejie Chi -
2023 Poster: On the Convergence of Federated Averaging with Cyclic Client Participation »
Yae Jee Cho · PRANAY SHARMA · Gauri Joshi · Zheng Xu · Satyen Kale · Tong Zhang -
2022 Poster: Federated Minimax Optimization: Improved Convergence Analyses and Algorithms »
PRANAY SHARMA · Rohan Panda · Gauri Joshi · Pramod K Varshney -
2022 Spotlight: Federated Minimax Optimization: Improved Convergence Analyses and Algorithms »
PRANAY SHARMA · Rohan Panda · Gauri Joshi · Pramod K Varshney -
2021 : Closing Remarks »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2021 Workshop: International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with ICML 2021 (FL-ICML'21) »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Shiqiang Wang · Han Yu -
2021 : Opening Remarks »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2021 Poster: Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm »
sajad khodadadian · Zaiwei Chen · Siva Maguluri -
2021 Spotlight: Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm »
sajad khodadadian · Zaiwei Chen · Siva Maguluri -
2020 : Closing remarks »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Shiqiang Wang · Han Yu -
2020 : Opening remarks »
Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Shiqiang Wang · Han Yu -
2020 Workshop: Federated Learning for User Privacy and Data Confidentiality »
Nathalie Baracaldo · Olivia Choudhury · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Gauri Joshi · Shiqiang Wang · Han Yu -
2019 Workshop: Coding Theory For Large-scale Machine Learning »
Viveck Cadambe · Pulkit Grover · Dimitris Papailiopoulos · Gauri Joshi -
2019 Poster: Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning »
Thinh Doan · Siva Maguluri · Justin Romberg -
2019 Oral: Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning »
Thinh Doan · Siva Maguluri · Justin Romberg