Timezone: »
Oral
Optimal Algorithms for Mean Estimation under Local Differential Privacy
Hilal Asi · Vitaly Feldman · Kunal Talwar
We study the problem of mean estimation of $\ell_2$-bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the (asymptotic) optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the randomizer with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of natural randomizers. To prove this result, we establish some properties of local randomizers, and use symmetrization arguments that allow us to write the optimal randomizer as the optimizer of a certain linear program. These structural results, which should extend to other problems, then allow us to show that the optimal randomizer belongs to the PrivUnit family. We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees. This allows us to establish several useful properties on the exact constants of the optimal error as well as to numerically estimate these constants.
Author Information
Hilal Asi (Stanford University)
Vitaly Feldman (Apple)
Kunal Talwar (Apple)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Optimal Algorithms for Mean Estimation under Local Differential Privacy »
Thu. Jul 21st through Fri the 22nd Room Hall E #1122
More from the Same Authors
-
2021 : Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 : Differential Secrecy for Distributed Data and Applications to Robust Differentially Secure Vector Summation »
Kunal Talwar -
2021 : Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling »
Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : When Is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? »
Gavin Brown · Mark Bun · Vitaly Feldman · Adam Smith · Kunal Talwar -
2021 : A Practitioners Guide to Differentially Private Convex Optimization »
Ryan McKenna · Hristo Paskov · Kunal Talwar -
2023 : Differentially Private Heavy Hitters using Federated Analytics »
Karan Chadha · Junye Chen · John Duchi · Vitaly Feldman · Hanieh Hashemi · Omid Javidbakht · Audra McMillan · Kunal Talwar -
2023 Poster: Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2022 : Low-Communication Algorithms for Private Federated Data Analysis »
Kunal Talwar -
2022 Poster: Private frequency estimation via projective geometry »
Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2022 Poster: Private optimization in the interpolation regime: faster rates and hardness results »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2022 Spotlight: Private optimization in the interpolation regime: faster rates and hardness results »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2022 Spotlight: Private frequency estimation via projective geometry »
Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2021 Poster: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Poster: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Oral: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2021 Oral: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2019 Poster: The advantages of multiple classes for reducing overfitting from test set reuse »
Vitaly Feldman · Roy Frostig · Moritz Hardt -
2019 Oral: The advantages of multiple classes for reducing overfitting from test set reuse »
Vitaly Feldman · Roy Frostig · Moritz Hardt