Timezone: »

Proximal and Federated Random Reshuffling
Konstantin Mishchenko · Ahmed Khaled · Peter Richtarik

Thu Jul 21 03:00 PM -- 05:00 PM (PDT) @ Hall E #722
Random Reshuffling (RR), also known as Stochastic Gradient Descent (SGD) without replacement, is a popular and theoretically grounded method for finite-sum minimization. We propose two new algorithms: Proximal and Federated Random Reshuffling (ProxRR and FedRR). The first algorithm, ProxRR, solves composite finite-sum minimization problems in which the objective is the sum of a (potentially non-smooth) convex regularizer and an average of $n$ smooth objectives. ProxRR evaluates the proximal operator once per epoch only. When the proximal operator is expensive to compute, this small difference makes ProxRR up to $n$ times faster than algorithms that evaluate the proximal operator in every iteration, such as proximal (stochastic) gradient descent. We give examples of practical optimization tasks where the proximal operator is difficult to compute and ProxRR has a clear advantage. One such task is federated or distributed optimization, where the evaluation of the proximal operator corresponds to communication across the network. We obtain our second algorithm, FedRR, as a special case of ProxRR applied to federated optimization, and prove it has a smaller communication footprint than either distributed gradient descent or Local SGD. Our theory covers both constant and decreasing stepsizes, and allows for importance resampling schemes that can improve conditioning, which may be of independent interest. Our theory covers both convex and nonconvex regimes. Finally, we corroborate our results with experiments on real data sets.

Author Information

Konstantin Mishchenko (CNRS)
Ahmed Khaled (Princeton University)
Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.​

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors