Timezone: »
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world. Distance-based methods have demonstrated promise, where testing samples are detected as OOD if they are relatively far away from in-distribution (ID) data. However, prior methods impose a strong distributional assumption of the underlying feature space, which may not always hold. In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection, which has been largely overlooked in the literature. Unlike prior works, our method does not impose any distributional assumption, hence providing stronger flexibility and generality. We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance. Under the same model trained on ImageNet-1k, our method substantially reduces the false positive rate (FPR@TPR95) by 24.77% compared to a strong baseline SSD+, which uses a parametric approach Mahalanobis distance in detection. Code is available: https://github.com/deeplearning-wisc/knn-ood.
Author Information
Yiyou Sun (University of Wisconsin Madison)
Yifei Ming (University of Wisconsin-Madison)
Jerry Zhu (University of Wisconsin-Madison)
Sharon Li (University of Wisconsin-Madison)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Out-of-Distribution Detection with Deep Nearest Neighbors »
Wed. Jul 20th through Thu the 21st Room Hall E #1002
More from the Same Authors
-
2021 : Corruption Robust Offline Reinforcement Learning »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2022 : Are Vision Transformers Robust to Spurious Correlations ? »
Soumya Suvra Ghosal · Yifei Ming · Sharon Li -
2023 Poster: Mitigating Memorization of Noisy Labels by Clipping the Model Prediction »
Hongxin Wei · HUIPING ZHUANG · RENCHUNZI XIE · Lei Feng · Gang Niu · Bo An · Sharon Li -
2023 Poster: When and How Does Known Class Help Discover Unknown Ones? Provable Understanding Through Spectral Analysis »
Yiyou Sun · Zhenmei Shi · Yingyiu Liang · Sharon Li -
2023 Poster: Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization and Detection »
Haoyue Bai · Gregory Canal · Xuefeng Du · Jeongyeol Kwon · Robert Nowak · Sharon Li -
2022 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Ryan Tibshirani · Aaditya Ramdas · Stephen Bates -
2022 : Challenges and Opportunities in Handling Data Distributional Shift »
Sharon Li -
2022 Poster: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2022 Poster: Mitigating Neural Network Overconfidence with Logit Normalization »
Hongxin Wei · RENCHUNZI XIE · Hao Cheng · LEI FENG · Bo An · Sharon Li -
2022 Spotlight: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2022 Spotlight: Mitigating Neural Network Overconfidence with Logit Normalization »
Hongxin Wei · RENCHUNZI XIE · Hao Cheng · LEI FENG · Bo An · Sharon Li -
2022 Poster: POEM: Out-of-Distribution Detection with Posterior Sampling »
Yifei Ming · Ying Fan · Sharon Li -
2022 Oral: POEM: Out-of-Distribution Detection with Posterior Sampling »
Yifei Ming · Ying Fan · Sharon Li -
2021 : LOOD: Localization-based Uncertainty Estimation for Medical Imaging (Spotlight #14) »
Yiyou Sun · Sharon Li -
2021 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Aaditya Ramdas · Ryan Tibshirani -
2021 Workshop: Uncertainty and Robustness in Deep Learning »
Balaji Lakshminarayanan · Dan Hendrycks · Sharon Li · Jasper Snoek · Silvia Chiappa · Sebastian Nowozin · Thomas Dietterich -
2021 Poster: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Spotlight: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Poster: Model-based Reinforcement Learning for Continuous Control with Posterior Sampling »
Ying Fan · Yifei Ming -
2021 Oral: Model-based Reinforcement Learning for Continuous Control with Posterior Sampling »
Ying Fan · Yifei Ming -
2020 Poster: Adaptive Reward-Poisoning Attacks against Reinforcement Learning »
Xuezhou Zhang · Yuzhe Ma · Adish Singla · Jerry Zhu -
2020 Poster: Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning »
Amin Rakhsha · Goran Radanovic · Rati Devidze · Jerry Zhu · Adish Singla -
2019 Poster: Teaching a black-box learner »
Sanjoy Dasgupta · Daniel Hsu · Stefanos Poulis · Jerry Zhu -
2019 Oral: Teaching a black-box learner »
Sanjoy Dasgupta · Daniel Hsu · Stefanos Poulis · Jerry Zhu