Timezone: »
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
Author Information
Jiayao Zhang (University of Pennsylvania)
Hongming ZHANG (Tencent AI Lab, Seattle)
Weijie Su (University of Pennsylvania)
Dan Roth (University of Pennsylvania and AWS AI Labs)

Dan Roth is the Eduardo D. Glandt Distinguished Professor at the Department of Computer and Information Science, University of Pennsylvania, lead of NLP Science at AWS AI Labs., and a Fellow of the AAAS, the ACM, AAAI, and the ACL. In 2017 Roth was awarded the John McCarthy Award, the highest award the AI community gives to mid-career AI researchers. Roth was recognized “for major conceptual and theoretical advances in the modeling of natural language understanding, machine learning, and reasoning.” Roth has published broadly in machine learning, natural language processing, knowledge representation and reasoning, and learning theory, and has developed advanced machine learning based tools for natural language applications that are being used widely. Roth was the Editor-in-Chief of the Journal of Artificial Intelligence Research (JAIR) and a program chair of AAAI, ACL, and CoNLL. Roth has been involved in several startups; most recently he was a co-founder and chief scientist of NexLP, a startup that leverages the latest advances in Natural Language Processing (NLP), Cognitive Analytics, and Machine Learning in the legal and compliance domains. NexLP was acquired by Reveal in 2020. Prof. Roth received his B.A Summa cum laude in Mathematics from the Technion, Israel, and his Ph.D. in Computer Science from Harvard University in 1995.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: ROCK: Causal Inference Principles for Reasoning about Commonsense Causality »
Wed. Jul 20th through Thu the 21st Room Hall E #127
More from the Same Authors
-
2021 : On the Convergence of Deep Learning with Differential Privacy »
Zhiqi Bu · Hua Wang · Qi Long · Weijie Su -
2023 Poster: On Regularization and Inference with Label Constraints »
Kaifu Wang · Hangfeng He · Tin Nguyen · Piyush Kumar · Dan Roth -
2023 Poster: The implicit regularization of dynamical stability in stochastic gradient descent »
Lei Wu · Weijie Su -
2022 Poster: Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval »
Uri Alon · Frank Xu · Junxian He · Sudipta Sengupta · Dan Roth · Graham Neubig -
2022 Spotlight: Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval »
Uri Alon · Frank Xu · Junxian He · Sudipta Sengupta · Dan Roth · Graham Neubig -
2022 Poster: Understanding Robust Generalization in Learning Regular Languages »
Soham Dan · Osbert Bastani · Dan Roth -
2022 Spotlight: Understanding Robust Generalization in Learning Regular Languages »
Soham Dan · Osbert Bastani · Dan Roth -
2021 Poster: Oneshot Differentially Private Top-k Selection »
Gang Qiao · Weijie Su · Li Zhang -
2021 Spotlight: Oneshot Differentially Private Top-k Selection »
Gang Qiao · Weijie Su · Li Zhang -
2021 Poster: Toward Better Generalization Bounds with Locally Elastic Stability »
Zhun Deng · Hangfeng He · Weijie Su -
2021 Spotlight: Toward Better Generalization Bounds with Locally Elastic Stability »
Zhun Deng · Hangfeng He · Weijie Su -
2020 Poster: Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion »
Qinqing Zheng · Jinshuo Dong · Qi Long · Weijie Su -
2020 Poster: Towards Understanding the Dynamics of the First-Order Adversaries »
Zhun Deng · Hangfeng He · Jiaoyang Huang · Weijie Su