Timezone: »

Scaling Structured Inference with Randomization
Yao Fu · John Cunningham · Mirella Lapata

Thu Jul 21 03:00 PM -- 05:00 PM (PDT) @ Hall E #832

Deep discrete structured models have seen considerable progress recently, but traditional inference using dynamic programming (DP) typically works with a small number of states (less than hundreds), which severely limits model capacity. At the same time, across machine learning, there is a recent trend of using randomized truncation techniques to accelerate computations involving large sums. Here, we propose a family of randomized dynamic programming (RDP) algorithms for scaling structured models to tens of thousands of latent states. Our method is widely applicable to classical DP-based inference (partition, marginal, reparameterization, entropy) and different graph structures (chains, trees, and more general hypergraphs). It is also compatible with automatic differentiation: it can be integrated with neural networks seamlessly and learned with gradient-based optimizers. Our core technique approximates the sum-product by restricting and reweighting DP on a small subset of nodes, which reduces computation by orders of magnitude. We further achieve low bias and variance via Rao-Blackwellization and importance sampling. Experiments over different graphs demonstrate the accuracy and efficiency of our approach. Furthermore, when using RDP for training a structured variational autoencoder with a scaled inference network, we achieve better test likelihood than baselines and successfully prevent posterior collapse.

Author Information

Yao Fu (University of Edinburgh)
John Cunningham (Columbia)
Mirella Lapata (University of Edinburgh)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors