Timezone: »
The need for efficiently comparing and representing datasets with unknown alignment spans various fields, from model analysis and comparison in machine learning to trend discovery in collections of medical datasets. We use manifold learning to compare the intrinsic geometric structures of different datasets by comparing their diffusion operators, symmetric positive-definite (SPD) matrices that relate to approximations of the continuous Laplace-Beltrami operator from discrete samples. Existing methods typically assume known data alignment and compare such operators in a pointwise manner. Instead, we exploit the Riemannian geometry of SPD matrices to compare these operators and define a new theoretically-motivated distance based on a lower bound of the log-Euclidean metric. Our framework facilitates comparison of data manifolds expressed in datasets with different sizes, numbers of features, and measurement modalities. Our log-Euclidean signature (LES) distance recovers meaningful structural differences, outperforming competing methods in various application domains.
Author Information
Tal Shnitzer (MIT)
Mikhail Yurochkin (IBM Research, MIT-IBM Watson AI Lab)
Kristjan Greenewald (IBM)
Justin Solomon (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Log-Euclidean Signatures for Intrinsic Distances Between Unaligned Datasets »
Wed. Jul 20th through Thu the 21st Room Hall E #616
More from the Same Authors
-
2021 : Sliced Mutual Information: A Scalable Measure of Statistical Dependence »
Ziv Goldfeld · Kristjan Greenewald -
2021 : Entropic Causal Inference: Identifiability for Trees and Complete Graphs »
Spencer Compton · Murat Kocaoglu · Kristjan Greenewald · Dmitriy Katz -
2023 : Identifiability Guarantees for Causal Disentanglement from Soft Interventions »
Jiaqi Zhang · Chandler Squires · Kristjan Greenewald · Akash Srivastava · Karthikeyan Shanmugam · Caroline Uhler -
2023 : Slicing Mutual Information Generalization Bounds for Neural Networks »
Kimia Nadjahi · Kristjan Greenewald · Rickard Gabrielsson · Justin Solomon -
2023 Poster: Few-Sample Feature Selection via Feature Manifold Learning »
David Cohen · Tal Shnitzer · Yuval Kluger · Ronen Talmon -
2022 Poster: Entropic Causal Inference: Graph Identifiability »
Spencer Compton · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu -
2022 Spotlight: Entropic Causal Inference: Graph Identifiability »
Spencer Compton · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu -
2021 Poster: Outlier-Robust Optimal Transport »
Debarghya Mukherjee · Aritra Guha · Justin Solomon · Yuekai Sun · Mikhail Yurochkin -
2021 Spotlight: Outlier-Robust Optimal Transport »
Debarghya Mukherjee · Aritra Guha · Justin Solomon · Yuekai Sun · Mikhail Yurochkin -
2021 : Model fusion via single-round FL »
Mikhail Yurochkin -
2021 Expo Talk Panel: Enterprise-Strength Federated Learning: New Algorithms, New Paradigms, and a Participant-Interactive Demonstration Session »
Laura Wynter · Nathalie Baracaldo · Chaitanya Kumar · Parijat Dube · Mikhail Yurochkin · Theodoros Salonidis · Shiqiang Wang -
2020 Poster: Model Fusion with Kullback--Leibler Divergence »
Sebastian Claici · Mikhail Yurochkin · Soumya Ghosh · Justin Solomon -
2020 Poster: Two Simple Ways to Learn Individual Fairness Metrics from Data »
Debarghya Mukherjee · Mikhail Yurochkin · Moulinath Banerjee · Yuekai Sun -
2019 Poster: Bayesian Nonparametric Federated Learning of Neural Networks »
Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang · Yasaman Khazaeni -
2019 Poster: Estimating Information Flow in Deep Neural Networks »
Ziv Goldfeld · Ewout van den Berg · Kristjan Greenewald · Igor Melnyk · Nam Nguyen · Brian Kingsbury · Yury Polyanskiy -
2019 Oral: Bayesian Nonparametric Federated Learning of Neural Networks »
Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang · Yasaman Khazaeni -
2019 Oral: Estimating Information Flow in Deep Neural Networks »
Ziv Goldfeld · Ewout van den Berg · Kristjan Greenewald · Igor Melnyk · Nam Nguyen · Brian Kingsbury · Yury Polyanskiy -
2018 Poster: Stochastic Wasserstein Barycenters »
Sebastian Claici · Edward Chien · Justin Solomon -
2018 Oral: Stochastic Wasserstein Barycenters »
Sebastian Claici · Edward Chien · Justin Solomon