Timezone: »
Data poisoning attacks aim at manipulating model behaviors through distorting training data. Previously, an aggregation-based certified defense, Deep Partition Aggregation (DPA), was proposed to mitigate this threat. DPA predicts through an aggregation of base classifiers trained on disjoint subsets of data, thus restricting its sensitivity to dataset distortions. In this work, we propose an improved certified defense against general poisoning attacks, namely Finite Aggregation. In contrast to DPA, which directly splits the training set into disjoint subsets, our method first splits the training set into smaller disjoint subsets and then combines duplicates of them to build larger (but not disjoint) subsets for training base classifiers. This reduces the worst-case impacts of poison samples and thus improves certified robustness bounds. In addition, we offer an alternative view of our method, bridging the designs of deterministic and stochastic aggregation-based certified defenses. Empirically, our proposed Finite Aggregation consistently improves certificates on MNIST, CIFAR-10, and GTSRB, boosting certified fractions by up to 3.05%, 3.87% and 4.77%, respectively, while keeping the same clean accuracies as DPA's, effectively establishing a new state of the art in (pointwise) certified robustness against data poisoning.
Author Information
Wenxiao Wang (University of Maryland)
Alexander Levine (University of Maryland)
Soheil Feizi (University of Maryland)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wed. Jul 20th 05:40 -- 05:45 PM Room Room 310
More from the Same Authors
-
2022 : Towards Better Understanding of Self-Supervised Representations »
Neha Mukund Kalibhat · Kanika Narang · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Certifiably Robust Multi-Agent Reinforcement Learning against Adversarial Communication »
Yanchao Sun · Ruijie Zheng · Parisa Hassanzadeh · Yongyuan Liang · Soheil Feizi · Sumitra Ganesh · Furong Huang -
2023 Poster: Run-off Election: Improved Provable Defense against Data Poisoning Attacks »
Keivan Rezaei · Kiarash Banihashem · Atoosa Malemir Chegini · Soheil Feizi -
2023 Poster: Identifying Interpretable Subspaces in Image Representations »
Neha Mukund Kalibhat · Shweta Bhardwaj · C. Bayan Bruss · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Text-To-Concept (and Back) via Cross-Model Alignment »
Mazda Moayeri · Keivan Rezaei · Maziar Sanjabi · Soheil Feizi -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Toward Efficient Robust Training against Union of Lp Threat Models »
Gaurang Sriramanan · Maharshi Gor · Soheil Feizi -
2022 Poster: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2022 Spotlight: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2021 : Invited Talk 6: T​owards Understanding Foundations of Robust Learning »
Soheil Feizi -
2021 Poster: Improved, Deterministic Smoothing for L_1 Certified Robustness »
Alexander Levine · Soheil Feizi -
2021 Poster: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2021 Spotlight: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2021 Oral: Improved, Deterministic Smoothing for L_1 Certified Robustness »
Alexander Levine · Soheil Feizi -
2020 Poster: Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness »
Aounon Kumar · Alexander Levine · Tom Goldstein · Soheil Feizi -
2020 Poster: Second-Order Provable Defenses against Adversarial Attacks »
Sahil Singla · Soheil Feizi -
2020 Poster: On Second-Order Group Influence Functions for Black-Box Predictions »
Samyadeep Basu · Xuchen You · Soheil Feizi -
2019 Poster: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Oral: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Poster: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2019 Oral: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi