Timezone: »
Poster
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests
Victor Chernozhukov · Whitney Newey · Víctor Quintas-Martínez · Vasilis Syrgkanis
Many causal and policy effects of interest are defined by linear functionals of high-dimensional or non-parametric regression functions. $\sqrt{n}$-consistent and asymptotically normal estimation of the object of interest requires debiasing to reduce the effects of regularization and/or model selection on the object of interest. Debiasing is typically achieved by adding a correction term to the plug-in estimator of the functional, which leads to properties such as semi-parametric efficiency, double robustness, and Neyman orthogonality. We implement an automatic debiasing procedure based on automatically learning the Riesz representation of the linear functional using Neural Nets and Random Forests. Our method only relies on black-box evaluation oracle access to the linear functional and does not require knowledge of its analytic form. We propose a multitasking Neural Net debiasing method with stochastic gradient descent minimization of a combined Riesz representer and regression loss, while sharing representation layers for the two functions. We also propose a Random Forest method which learns a locally linear representation of the Riesz function. Even though our method applies to arbitrary functionals, we experimentally find that it performs well compared to the state of art neural net based algorithm of Shi et al. (2019) for the case of the average treatment effect functional. We also evaluate our method on the problem of estimating average marginal effects with continuous treatments, using semi-synthetic data of gasoline price changes on gasoline demand.
Author Information
Victor Chernozhukov (MIT)
Whitney Newey (MIT)
Víctor Quintas-Martínez (MIT)
I am a PhD student at the Economics department at MIT. My research focuses on machine learning for estimation of causal and treatment effects, including automatically debiased ML, instrumental variable methods and panel data settings.
Vasilis Syrgkanis (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Oral: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests »
Wed. Jul 20th 05:45 -- 06:05 PM Room Hall G
More from the Same Authors
-
2020 : Contributed Talk: Incentivizing Bandit Exploration:Recommendations as Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 : DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions »
Amit Sharma · Vasilis Syrgkanis · cheng zhang · Emre Kiciman -
2022 : Adversarial Estimation of Riesz Representers »
Victor Chernozhukov · Whitney Newey · Rahul Singh · Vasilis Syrgkanis -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2019 Poster: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Oral: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Poster: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis