Timezone: »
Recent progress in state-only imitation learning extends the scope of applicability of imitation learning to real-world settings by relieving the need for observing expert actions.However, existing solutions only learn to extract a state-to-action mapping policy from the data, without considering how the expert plans to the target. This hinders the ability to leverage demonstrations and limits the flexibility of the policy.In this paper, we introduce Decoupled Policy Optimization (DePO), which explicitly decouples the policy as a high-level state planner and an inverse dynamics model. With embedded decoupled policy gradient and generative adversarial training, DePO enables knowledge transfer to different action spaces or state transition dynamics, and can generalize the planner to out-of-demonstration state regions.Our in-depth experimental analysis shows the effectiveness of DePO on learning a generalized target state planner while achieving the best imitation performance. We demonstrate the appealing usage of DePO for transferring across different tasks by pre-training, and the potential for co-training agents with various skills.
Author Information
Minghuan Liu (Shanghai Jiao Tong University)
Zhengbang Zhu (Shanghai Jiao Tong University)
Yuzheng Zhuang (HUAWEI)
Weinan Zhang (Shanghai Jiao Tong University)
Jianye Hao (Huawei Noah's Ark Lab)
Yong Yu (Shanghai Jiao Tong University)
Jun Wang (UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization »
Thu. Jul 21st 02:55 -- 03:00 PM Room Hall G
More from the Same Authors
-
2023 Poster: GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models »
Hanjing Wang · Man-Kit Sit · Congjie He · Ying Wen · Weinan Zhang · Jun Wang · Yaodong Yang · Luo Mai -
2022 Poster: Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach »
Shuang Wu · Ling Shi · Jun Wang · Guangjian Tian -
2022 Poster: Neuro-Symbolic Hierarchical Rule Induction »
Claire Glanois · Zhaohui Jiang · Xuening Feng · Paul Weng · Matthieu Zimmer · Dong Li · Wulong Liu · Jianye Hao -
2022 Spotlight: Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach »
Shuang Wu · Ling Shi · Jun Wang · Guangjian Tian -
2022 Spotlight: Neuro-Symbolic Hierarchical Rule Induction »
Claire Glanois · Zhaohui Jiang · Xuening Feng · Paul Weng · Matthieu Zimmer · Dong Li · Wulong Liu · Jianye Hao -
2022 Poster: Learning Pseudometric-based Action Representations for Offline Reinforcement Learning »
Pengjie Gu · Mengchen Zhao · Chen Chen · Dong Li · Jianye Hao · Bo An -
2022 Spotlight: Learning Pseudometric-based Action Representations for Offline Reinforcement Learning »
Pengjie Gu · Mengchen Zhao · Chen Chen · Dong Li · Jianye Hao · Bo An -
2021 Poster: Learning in Nonzero-Sum Stochastic Games with Potentials »
David Mguni · Yutong Wu · Yali Du · Yaodong Yang · Ziyi Wang · Minne Li · Ying Wen · Joel Jennings · Jun Wang -
2021 Poster: Modelling Behavioural Diversity for Learning in Open-Ended Games »
Nicolas Perez-Nieves · Yaodong Yang · Oliver Slumbers · David Mguni · Ying Wen · Jun Wang -
2021 Poster: Estimating $\alpha$-Rank from A Few Entries with Low Rank Matrix Completion »
Yali Du · Xue Yan · Xu Chen · Jun Wang · Haifeng Zhang -
2021 Spotlight: Learning in Nonzero-Sum Stochastic Games with Potentials »
David Mguni · Yutong Wu · Yali Du · Yaodong Yang · Ziyi Wang · Minne Li · Ying Wen · Joel Jennings · Jun Wang -
2021 Oral: Modelling Behavioural Diversity for Learning in Open-Ended Games »
Nicolas Perez-Nieves · Yaodong Yang · Oliver Slumbers · David Mguni · Ying Wen · Jun Wang -
2021 Spotlight: Estimating $\alpha$-Rank from A Few Entries with Low Rank Matrix Completion »
Yali Du · Xue Yan · Xu Chen · Jun Wang · Haifeng Zhang -
2020 Poster: Multi-Agent Determinantal Q-Learning »
Yaodong Yang · Ying Wen · Jun Wang · Liheng Chen · Kun Shao · David Mguni · Weinan Zhang -
2020 Poster: Bidirectional Model-based Policy Optimization »
Hang Lai · Jian Shen · Weinan Zhang · Yong Yu -
2019 Poster: Lipschitz Generative Adversarial Nets »
Zhiming Zhou · Jiadong Liang · Yuxuan Song · Lantao Yu · Hongwei Wang · Weinan Zhang · Yong Yu · Zhihua Zhang -
2019 Poster: BayesNAS: A Bayesian Approach for Neural Architecture Search »
Hongpeng Zhou · Minghao Yang · Jun Wang · Wei Pan -
2019 Oral: BayesNAS: A Bayesian Approach for Neural Architecture Search »
Hongpeng Zhou · Minghao Yang · Jun Wang · Wei Pan -
2019 Oral: Lipschitz Generative Adversarial Nets »
Zhiming Zhou · Jiadong Liang · Yuxuan Song · Lantao Yu · Hongwei Wang · Weinan Zhang · Yong Yu · Zhihua Zhang -
2018 Poster: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu -
2018 Poster: Mean Field Multi-Agent Reinforcement Learning »
Yaodong Yang · Rui Luo · Minne Li · Ming Zhou · Weinan Zhang · Jun Wang -
2018 Oral: Mean Field Multi-Agent Reinforcement Learning »
Yaodong Yang · Rui Luo · Minne Li · Ming Zhou · Weinan Zhang · Jun Wang -
2018 Oral: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu